SURESH

GYAN VIHAR

Il V E R S I T'Y
Accredlted by NAAC with ‘A+’ Grade

Master of Computer Application
(M.C.A)

Introduction to Software
Semester-I
Author - Sonika Katta

SURESH GYAN VIHAR UNIVERSITY

Centre for Distance and Online Education
Mahal, Jagatpura, Jaipur-302025

EDITORIAL BOARD (CDOE, SGVU)

Dr (Prof.) T.K. Jain Dr. Manish Dwivedi

Director, CDOE, SGVU Associate Professor é“Dy, Director,
CDOE, SGVU

Dr. Dev Brat Gupta

Associate Professor (SILS) & Academic Mr. Manvendra Narayan Mishra

Head, CDOE, SGVU Assistant Professor (Deptt. of Mathematics)
SGVU

Ms. Hemlalata Dharendra

Assistant Professor, CDOE, SGVU M. Ashphaq Ahmad

Ms. Kapila Bishnoi Assistant Professor, CDOE, SGVU

Assistant Professor, CDOE, SGVU

Published by:

S. B. Prakashan Pvt. Ltd.

WZ-6, Lajwanti Garden, New Delhi: 110046
Tel.: (011) 28520627 | Ph.: 9205476295

Email: info@sbprakashan.com | Web.: www.sbprakashan.com

© SGVU
All rights reserved.

No part of this book may be reproduced or copied in any form or by any means (graph-
ic, electronic or mechanical, including photocopying, recording, taping, or information
retrieval system) or reproduced on any disc, tape, perforated media or other information
storage device, etc., without the written permission of the publishers.

Every effort has been made to avoid errors or omissions in the publication. In spite of this,
some errors might have crept in. Any mistake, error or discrepancy noted may be brought
to our notice and it shall be taken care of in the next edition. It is notified that neither the
publishers nor the author or seller will be responsible for any damage or loss of any kind,
in any manner, therefrom.

For binding mistakes, misprints or for missing pages, etc., the publishers’ liability is lim-
ited to replacement within one month of purchase by similar edition. All expenses in this
connection are to be borne by the purchaser.

Designed & Graphic by : S. B. Prakashan Pvt. Led.

Printed at :

SYLLABUS
MCA (Semester - 1)
Introduction to Software (MCA-102)

Learning Outcomes

Distinguish between Operating Systems software and Application Systems software.
Describe commonly used operating systems.

Identify the primary functions of an Operating System.

Describe the "boot™ process.

Identify Desktop and Windows features.

Use Utility programs.

Unit-I;

Introduction to Software Engineering, Software Components, Software Characteristics,
Software Crisis, Software Engineering Processes, Similarity and Differences from
Conventional

Engineering Processes, Software Quality Attributes. Software Development Life Cycle
(SDLC)

Models: Water Fall Model, Prototype Model, Spiral Model, Evolutionary Development
Models,

Iterative Enhancement Models.

Unit-11;

Requirement Engineering Process: Elicitation, Analysis, Documentation, Review and
Management of User Needs, Feasibility Study, Information Modeling, Data Flow Diagrams,
Entity Relationship Diagrams, Decision Tables, SRS Document, IEEE Standards for SRS.
Software Quality Assurance (SQA): Verification and Validation, SQA Plans, Software
Quality

Frameworks, 1SO 9000 Models, SEI-CMM Model.

Unit-111;

Basic Concept of Software Design, Architectural Design, Low Level Design: Modularization,
Design Structure Charts, Pseudo Codes, Flow Charts, Coupling and Cohesion Measures,
Design

Strategies: Function Oriented Design, Object Oriented Design, Top-Down and Bottom-Up
Design. Software Measurement and Metrics: Various Size Oriented Measures: Halestead’s
Software Science, Function Point (FP) Based Measures, Cyclomatic Complexity Measures:
Control Flow Graphs.

Unit-1V:

Testing Objectives, Unit Testing, Integration Testing, Acceptance Testing, Regression
Testing,

Testing for Functionality and Testing for Performance, Top-Down and Bottom-Up Testing
Strategies: Test Drivers and Test Stubs, Structural Testing (White Box Testing), Functional
Testing (Black Box Testing), Test Data Suit Preparation, Alpha and Beta Testing of Products.
Static Testing Strategies: Formal Technical Reviews (Peer Reviews), Walk Through, Code
Inspection, Compliance with Design and Coding Standards.

Unit-V:

Software Maintenance and Software Project Management,Software as an Evolutionary
Entity, Need for Maintenance, Categories of Maintenance: Preventive, Corrective and
Perfective Maintenance, Cost of Maintenance, Software ReEngineering, Reverse
Engineering. Software Configuration Management Activities, Change Control Process,
Software Version Control, An Overview of CASE Tools. Estimation of Various Parameters
such as Cost, Efforts, Schedule/Duration, Constructive Cost Models (COCOMO), Resource
Allocation Models, Software Risk Analysis and Management.

References:

1. R. S. Pressman, Software Engineering: A Practitioners Approach, McGraw Hill.

2. Rajib Mall, Fundamentals of Software Engineering, PHI Publication.

3. K. K. Aggarwal and Yogesh Singh, Software Engineering, New Age International
Publishers.

4. Pankaj Jalote, Software Engineering, Wiley.

5. Carlo Ghezzi, M. Jarayeri, D. Manodrioli, Fundamentals of Software Engineering, PHI
Publication.

6. lan Sommerville, Software Engineering, Addison Wesley.

7. Kassem Saleh,”Software Engineering”, Cengage Learning.

8. Pfleeger, Software Engineering, Macmillan Publication.

MCA 02 IntroduCtion to Software

Page No
Block 1 | Basic Concepts 4
Unit 1 Problem Solving Stages 5
Unit2 | Procedural Programming 30
Unit3 | Operating Systems 46
{Unit4 | File Organization 91‘
Block 2 | Unix Operating System 131
Unit5 | Unix Operating System 132
Unit 6 VI Editor 155
Unit 7 Input and Output 201
Unit8 | Pipes & Filters 209
Block 3 | Programming in Unix 221
Unit 9 Shell Script 222
Unit 10 | Centrol Statements 233
Unit 11 | File System 243
Block 4 | Software Engiheering 262
Unit 12 | Software Engineering 263

COURSE INTRODUCTION

S,. m Software is a generic term referring to any

computer software that is an essential part of the computer system.
An Operating system is an obvious example, while an OpenGL or
database library are less obvious examples. System Software
contrasts with application software, which are programs that help the
end-user to perform specific, productive tasks, such as word
processing or image manipulation. System Software provides (user)
interffaces for developing and running operating systems,
administration and command interpreters (‘shell’), communication
systems, internet browsers, compiler / interpreters for programming
language database management systems (DBMS&). The most
important program that runs on a computer. Every general-purpose
computér must have an operating system to run other programs.
Operating systems provide a software platform on top of which other
programs, called application programs, can run. The application
programs must be written to run on top of a particular operating
system. Designing software is an exercise in managing complexity.
The complexity exits within the software design . itself, within the
software organization of the company, and within the industry as a
whole. A software design is very similar to systems design. It can
span multiple technologies and often involves multiple sub-disciplines.
Software specifications tend to be fluid, and change rapidly and often,
usually while the design process is still going on. Introduction to
Software is divided into Four Blocks. Block 1 describes the Basic
Concepts of Systém Software. Block 2 explains the Unix Operating
System. Block 3 discusses the Programming in Unix. Finally Block 4
is about Software Engineering.

BLOCK 1 INTRODUCTION

At the end of this block you will know the Basic concepts
of System Software that describe the problem solving stages.
The concept of an algorithm is fundamental to computer science.
Algorithms exist for many common problems, and designing
efficient algorithms plays a crucial role in developing large-scale
computer system. The most fundamental system program is the
Operating System, which controls all the computer's resources
and provides the base upon which the application programs can
be written. Most computer users have had some experience
with an operating system, but it is difficult to pin down precisely
what an operating system is. - Part of the problem is that
operating systems perform two basically unrelated functions, and
depending on who is doing the talking, you hear mostly about

one function or the other.

Introduction to System Software is divided into Four Blocks.

Block 1 consists of four Units.

Unit 1: deals with basic concepts: of System Software, fbur
stages of Problem solving, Types of Algorithm and Flow chart.

Unit 2: deals with the Procedural Programming, Loaders, Linkers

and Graphical User Interface.

Unit 3: deals with the Operating System Concepts, Process

Management and conditions for Deadlock.

Unit 4: deals with the File Organization, I/O device Management

and Memory Management.

UNIT -1

PROBLEM SOLVING STAGES

Structure
Overview
Learning Objectives
1.1 Introduction
1.1.1 Polya’s Four Stages of Problem Solving
1.2 Pseudo code
1.3 Algorithm
1.3.1 Types of Algorithm
1.3.2 Sorting Algorithms
1.4 Flowchart
1.4.1 Overview
1.4.2 Steps for Creating a Flowchart
Let us sum up
Answer to Learning Activities
References

OVERVIEW
Before we get too far into the discussion of problem solving, it

is worth pointing out that we find it useful to distinguish between the
three words "method", "answer" and "solution". By "method" we
mean the means used to get an answer. This will generally involve
one or more problem solving strategies. On the other hand, we use
"answer" to mean a number, quantity or some other entity that the
problem is asking for. Finally, a }"solution"' is the whole process of
solving a problem, including the method of obtaining an answer and
the answer itself.

method + answer = solution

LEARNING OBJECTIVES

After completing this unit, you should be able to:
% Understand the four stages of Problem Solving
» Familiar with Pseudo code

» Know the type of Algorithms
Understand the Flow Chart

L)

4

D)

%

1.1 INTRODUCTION

How do we do Problem Solving?

There appear to be four basic steps. Polya enunciated
these in 1945 but all of them were known and used well before
then. And we mean well before then. The Ancient Greek
mathematicians like Euclid and Pythagoras certainly knew how
it was done.

1.1.1 Polya’s Four Stages of Problem Solving are
listed below.

1. Understand and explore the problem;
2. Find a strategy;

3. Use the strategy to solve the problem;
4. Look back and reflect on the solution.

Stage1: There is no chance of being able to solve a problem
unless you first understand it. This process requires knowing
not only what you have to find but also the key pieces of
information that somehow need to be put together to obtain the
answer. People will often not be able to absorb all the
important information of a problem in one go. It will almost
always be necessary to read a problem several times, both at
the start and during working on it. During the solution process,
people may find that they have to look back at the original

question from time to time to make sure that they are on the
right track.

Stage 2: Here finding a strategy tends to suggest that it is a
fairly simple matter to think of an appropriate strategy. However,
there are certain problems where people may find it necessary
te play around with the information before they are able to think
of a strategy that might produce a solution. This exploratory
phase will also help them to understand the problem better and
may make them aware of some piece of information that they
might have neglected after the first reading.

Having explored the problem and decided on a plan of
attack, the third problem-solving step, solve the problem, can
be taken. Hopefully now the problem will be solved and an
answer obtained. During this phase it is impor{ant to keep a
track of what they are doing. This is useful to show othefs what
they have done and it is also helpful in finding errors shouIvd the

right answer not be found.

At this point many children, especially mathematically
able ones, will stop. But it is worth getting them into the habit of
looking back over what they have done. There are several good
reasons for this. First of all it is good practice for them to check
their working and make sure that they have not made any
errors. Second, it is vital to make sure that the answer they
obtained is in fact the answer to the problem and not to the
problem that they thought was being asked. Third, in looking
back and thinking a litle more about the problem leads to see
another way of solving the problem. This new solution may be a
nicer solution than the original and may give more insight into
what is really going on. Finally, the better students especially,

may be able to generalize or extend the problem.

Generalizing a problem means creating a problem that has the
original problem as a special case. So a problem about three

pigs may be changed into one which has any number of pigs.

1.2 PSEUDOCODE

What is pseudo code?

Pseudo code consists of short, English phrases used to
explain specific tasks within a program's algorithm. Pseudo
code should not include keywords in any specific computer
languages. It should be written as a list of consecutive phrases.
You should not use flowcharting symbols but you can draw
arrows to show looping processes. Indentation can be used to
show the logic in pseudo code as well. For example, a first-
year, 9th grade Visual Basic programmer should be able to
read and understand the pseudo code written by a 12th grade
AP Data Structures student. In fact, the VB programmer could
take the other student's pseudo code and generate a VB

program based on that pseudo code.
Why is pseudo code necessary?

The programming process is a complicated one. You
must first understand the program specifications, of course, and
then you need to organize your thoughts and create the
program. This is a difficult task when the program is not trivial
(i.,e. easy). You must break the main tasks that must be
accomplished into smaller ones in order to be able to eventually
write fully developed code. Writing pseudo code will save you
time later during the construction & testing phase of a
program's development.

How do | write pseudo code?

First you may want to make a list of the main tasks that
must be accomplished on a piece of scratch paper. Then, focus
on each of those tasks. Generally, you should try to break each
main task down into very small tasks that can each be explained
with a short phrase. There may eventually be a one-to-one
correlation between the lines of pseudo code and the lines of the

code that you write after you have finished pseudo coding.

It is not necessary in pseudo code to mention the need to
declare variables. It is wise however to show the initialization of
variables. You can use variable names in pseudo code but it is
not necessary to be that specific. The word "Display" is used in
some of the examples. This is usually general enough but if the
task of printing to a printer, for example, is algorithmically different
from printing to the screen, you may make mention of this in the
pseudo code. You may show functions and procedures within
pseudo code but this is not always necessary either. Overall,
remember that the purpose of pseudo code is to help the
programmer efficiently write code. Therefore, you must honestly
attempt to add enough detail and analysis to the pseudo code. In
the professional programming world, workers who write pseudo
code are often not the same people that write the actual code for
a program. In fact, sometimes the person who writes the pseudo
code does not know beforehand what programming language will

be used to eventually write the program.
Example:

Original Program Specification:

Write a program that obtains two
integer numbers from the user. It will
print out the sum of those numbers.

Pseudo code:

Prompt the user to enter the first
integer

Prompt the user to enter a second
integer

Compute the sum of the two user
inputs

Display an output prompt that
explains the answer as the sum
Display the result

Pseudo code is a written statement of an algorithm using a
restricted and well-defined vocabulary. In the next section you
look at the vocabulary in detail.

Input, output, iteration, decision and processing in
pseudo code. It is useful to separate the pseudo code into
several groups as shown here:

Group Key words Example

INPUT, READ Used to get
INPUT counter
values from a data source,
a keyboard for instance
Input/Output DISPLAY Used to output

d ink
values to a data sink, a DISPLAY

screen or printer for
new_value

instance

10

Iteration

REPEAT

statement

UNTIL <condition>

The Repeat ... Until loop
which was introduced in
the introductory lesson on
algorithms. The REPEAT
loop executes the
statement until the
condition becomes true.
DOWHILE <condition>
statement

END DOWHILE

This is the While loop also
introduced in the
lesson on
The WHILE

loop executes the

introd uctory

algorithms.

statement while the

<condition> is true.

FOR <var> = <start value>
to <stop value>

ENDFOR

You havenft seen this loop
before but it is a special
case of the While loop.
The FOR loop iterates for
a fixed number of steps.

SET count _
value TO 0
REPEAT
DISPLAY
count_value
ADD1TO
count_value;
UNTIL

count_value >10

DOWHILE
count_value <10
DISPLAY
count_value
count_value =

count_value + 1

END DOWHILE
FOR count =1 to
10 _
DISPLAY count
+ count
ENDFOR

The statements
inside the loops
are indented to
aid the readability
of the pseudo
code.

11

The While and Repeat
loops can be for a variable
number of steps.

Decision IF <condition> THEN IF count > 10
‘ ‘statement THEN DISPLAY
ENDIF- count
IF <condition> ENDIF
THEN statement IF count > 10
ELSE statement THEN DISPLAY
ENDIF |'count > 10'
|[Both of these decision ADD 4 to
| forms were first introduced|>4™
in the algorifhms ELSE DISPLAY
introductory lesson. count <= 10
5 ADD 3 to
sum
ENDIF
Processing ADD, SUBTRACT, |lADD 3 TO count
| COMPUTE, SUBTRACT 5
SET FROM count
ISET count TO
12
-|[COMPUTE 10 +
count GIVING
k new_cdunt

12

1.3 ALGORITHM

An algorithm, named after the ninth century scholar Abu

Jafar Muhammad Ibn Musu Al-Khowarizmi, is defined as

follows: Roughly speaking:

An algorithm is a set of rules for carrying out calculation
either by hand or on a machine.

An algorithm is a finite step-by-step procedure to
achieve a required result.

An algorithm is a sequence of computational steps that
transform the input into the output.

An algorithm is a sequence of operations performed on

data that have to be organized in data structures.

An algorithm is an abstraction of a program to be
executed on a physical machine (model of

Computation).

1.3.1 Types of Algorithm

1. Linear: a linear algorithm does something, once, to

every object in turn in a collection. Examples: looking for
a word in the dictionary that fits into a crossword. Adding

up all the numbers in an array.

Divide and Conquer: the algorithms divide the
problem's data into pieces and work on the pieces. For
example conquering Gaul by dividing it into three pieces
and then beating rebellious pieces into submission.
Another example is the Stroud-Warnock for displaying
3D scenes: the view is divided into four quadrants, if a
quadrant is simple, a simple process displays it, but if

complex, the same Stroud-Warnock algorithm is

1

14

' reapplied to it. Divide-and-conquer algorithms come in

two forms. The division can be calculated to be precisely
down the middle. Merge-sort splits and array into halves,
sorts each of them and then merges the two into a single
form. On the other hand, Tony Hoare's Quick sort and
Tree sort make a rough split into two parts that can be
sorted and rapidly joined together. On average these
algorithms are faster than the precise divisions, but
perform very badly on some data.

. Binary: When we divide the data in two we call the

algorithm a binary algorithm. The classic is binary search
algorithm for hunting lions: divide the area into two and
pick a piece that contains a lion.... repeat. This leads to

an elegant way to find roofs.

. Greedy algorithms try to solve problems by selecting a

best piece first and then working on the other pieces
later. For example, to pack a knapsack, try putting in the
biggest objects first and add the smaller one later. Or to

find the shortest path through a maze, always take the

- shortest next step that you can see. Greedy algorithms

don't always produce optimal solutions, but often give
acceptable approximations to good ones.

. Iterative algorithms start with a value and repeatedly

change it in the direction of the solution. We get a series
of approximations to the answer. The algorithm stops
when two successive values get close enough. For

- example:

ALGORITHM square_root(a, epsilon)

oldv=a

newv=a/w
WHILE | oldv - newv | < epsilon
oldv =newv
newv =(a+oldv * oldv)/(2*oldv)
END WHILE
END ALGORITHM
1.3.2 Sorting Algorithms

One of the fundamental problems of computer science is
ordering a list of items. There's a plethora of solutions to this
problem, known as sorting algorithms. Some sorting algorithms
are simple and intuitive, such as the bubble sort. Others, such
as the quick sort are extremely complicated, but produce
lightening-fast results.

Sorting Algorithms

Bubble sort

Insertion sort

Merge sort

Quick sort

The bubble sort is the oldest and simplest sort in use.
Unfortunately, it's also the slowest.

The bubble sort works by comparing each item in the list
with the item next to it, and swapping them if required. The
algorithm repeats this process until it makes a pass all the way
through the list without swapping any items (in other words, all
items are in the correct order). This causes larger values to
"bubble" to the end of the list while smaller values "sink"
towards the beginning of the list.

15

The bubble sort is generally considered to be the most
inefficient sorting algorithm in common usage. Under best-case
conditions (the list is already sorted), the bubble sort can
approach a constant O(n) level of complexity. General-case is

an abysmal O(n?).

void bubbleSort(int numbers[], int array_size)
{

inti, j, temp;

for(i= (array;size -1);i>=.0; i-)
A
for(j=1;j<=i;j++)
{
if (numbers|j-1] > numbers][j])
{
temp = numbers[j-1]; .
numbers[j-1] = numbers]j]; 5
numbers[j] = temp;
2}
}
)

16

The merge sort splits the list to be sorted into two equal
halves, and places them in separate arrays. Each array is
recursively sorted, and then merged back together to form the
final sorted list. Like most recursive sorts, the merge sort has

an algorithmic complexity of O(n log n).

Elementary implementations of the merge sort make use
of three arrays - one for each half of the data set and one to
store the sorted list in. The below algorithm merges the arrays
in-place, so only two arrays are requited. There are non-
recursive versions of the merge sort, but they don't yield any

' §i’gniﬁ§éntz performance enhancement over the recursive

algorithm on most machines.

void mergeSort(int numbers|[], int temp[], int array_size)

{

m_sort(numbers, temp, 0, array_size - 1); .

}

void m_sort(int numbers]], int temp]], int left, int right)

{

int mid;

if (right > left)

{
mid = (right + left) / 2;
m_sort(numbers, temp, left, mid);
m_sort(numbers, temp, mid+1, right);

merge(numbers, temp, left, mid+1, right);

17

}
}

\ .
void merge(int numbers] }, int temp[], int left, int mid, int
right)

{
inti, left_end, num_elements, tmp_pos;
left_ end = mid - 1;
tmp_pos = left;
num_elements = right - left + 1;
while ((left <= left_end) && (mid <= right))
{
if (numbers[left] <= numbers[mid])
{
temp[tmp_pos] = numbers]left];
tmp_pos = tmp_pos + 1;
left = left +1;
}

{

temp[tmp_pos] = numbers[mid];
tmp_pos = tmp_pos + 1;
mid = mid + 1;
}
}

18

while (left <= left_end)

{
temp[tmp_pos] = numbers[left];
left = left + 1;
tmp_pos = tmp_pos + 1;

}

while (mid <= right)

{
temp[tmp_pos] = numbers[mid];
mid = mid + 1,

tmp_pos =tmp_pos + 1;

}
for (i=0; i <= num_elements; i++)
{
numbers(right] = templ[right];
right = right - 1;
}
}

The quick sort is an in-place, divide-and-conquer, massively
recursive sort. As a normal person would say, it's essentially a
faster in-place version of the merge sort. The quick sort
algorithm is simple in theory, but very difficult to put into code
(computer scientists tied themselves into knots for years trying
to write a practical implementation of the algorithm, and it still

has that effect on university students).

19

“The recursive algorithm consists of four steps (which closely

rese.mblé the merge sort):

1. If there are one or less elements in the array to be
sorted, return immediately.

2. Pick an element in the array to serve as a "pivot" point.
(Usually the left-most element in the array is used.)

3. Split the array into two parts - one with elements larger
than the pivot and the other with elements smaller than

the pivot.

4. Recursively repeat the algorithm for both halves of the

original array.

void quickSort(int numbers[], int array_size)

{
g_sort(numbers, 0, array_size - 1);
}
void q_sort(int numbers[], int left, int right)
{ .
int pivot, |_hold, r_hold;
|_hold = left;
r_hold = right;

pivot = numbers]left];
while (left < right)
{
while ((numbers[right] >= pivot) && (left < right))

right--;

20

if (left |= right)
{ |
numbers[left] = numbers[right];
left++;
}
while ((numbers][left] <= pivot) && (left < right))
left++; -
if (left 1= right)
{
numbers[right] = numbers[left];
right--;
}
}
numbers[left] = pivot;
pivot = left;
left = |_hold;
right = r_hold,;
if (left < pivot)
q_sort(numbers, left, pivot-1);
if (right > pivot)

g_sort(numbers, pivot+1, right);

21

1.4 FLOWCHART

A flow chart is a pictorial representation showing all of

the steps of a process.

A Flowchart is used for:

Defining and analyzing processes (example: What is the

registration process for entering freshmen students?)

Building a step-by-step picture of the process for
analysis, discussion, or communication purposes
(example: Is it possible to shorten the length of time it

takes for a student to complete the program?)

Defining, standardizing, or finding ar 2as for improvement

in a process.

1.4.1 Overview

22

Quality Improvement Tool: Flow charts are used

specifically for a process.

A flow chart is defined as a pictorial representation
describing a process being studied or even used to plan
stages of a project. Flow charts tend to provide people
with a common language or reference point when

dealing with a project or process.

Four particular types of flow charts have proven useful
when dealing with a process analysis: top-down flow
chart, detailed flow chart, work flow diagrams, and a
deployment chart. Each of the different types of flow
charts tends to provide a different aspect to a process or
a task. Flow charts provide an excellent form of

documentation for a process, and quite often are useful

when examining how various steps in a process work
together.

When dealing with a process flow chart, two separate
stages of the process should be considered: the finished
product and the making of the product. In order to
analyze the finished product or how to operate the
process, flow charts tend to use simple and easily
recognizable symbols. The basic flow chart symbols
below are used when analyzing how to operate a
process.

Process 4% ‘\DTBMJ

N

o’
In order to analyze the second condition for a flow

i —

’

. Manual
operation

{ * Terminator -)

5,

process chart, one should use the ANSI standard.
symbols. The ANSI standard symbols used most often
include the following:

Operdloﬁ . ;
.Drive Nail, Cement, Type Letter.
- E Move Material by truck, conveyor, or hand.

Storage 5
/\Raw Material in bins, finished product on pallets,

or filed documents.

23

Delay

Wait for elevator, papers waiting, material
waiting

Inspection/
measurement

IRead gages, read papers for information, or check

inspection ’
K /Any combination of two or more of these symbols

shows an understanding for a joint process.

quality of goods.

1.4.2 Steps for Creating a Flowchart Are:

1. Familiarize the participants with the flowchart symbols

2. Brainstorm major process tasks. Ask questions such as
"What really happens next in the process?", "Does a
decision need to be made before the next step?", or
What approvals ‘are required before moving on to the
next task?"

3. Draw the prodess flowchart using the symbols on a flip
chart or overhead transparency. Every process will have
a start and an end (shown by elongated circles). All
processes will have tasks and most will have decision

points (shown by a diamond).
4. Analyze the flowchart for such items as:

o Time-per-event (reducing cycle time)

o Process repeats (preventing rework)

24

o Duplication of effort (identifying and eliminating
duplicated tasks)

o Unnecessary tasks (eliminating tasks that are in
the process for no apparent reason)

o Value-added versus non-value-added tasks

CONSTRUCTION / INTERPRETATION tip for a flow chart.

Define the boundaries of the process clearly.
Use the simplest symbols possible.
Make sure every feedback loop has an escape.

There is usually only one output arrow out of a process

box. Otherwise, it may require a decision diamond.

INTERPRETATION

Analyze flow chart of actual process.

Analyze flow chart of best process.

Compare both charts, looking for areas where they are
different. Most of the time, the stages where differences

occur is considered to be the problem area or process.

Take appropriate in-house steps to correct the
differences between the two separate flows.

EXAMPLE
Process Flow Chart- Finding the best way home

This is a simple case of processes and decisions in finding the

best route home at the end of the working day.

25

26

The Best Way Home

Leaving the Office

Checkthe Time
and Weather

Weather Clear?

Yes

Before 5:00pm?

Yes
®

Check for
congestion on
primary route

Primary
congested?

NO ———

. Y'ea
Take Alternate "A" Divert to Alternate Take the Primary
Home B Route Home

([Arrive Safely)

Process Flow Chart- How a process works

(Assembling a ballpoint pen)

Ball-Point Pen Assembly

Shell
"\ Top

Assemble

| Check Clip
Clearance

Shell
Bottom

Refill

Assemble

Hold for Shell
Tops

Assemble

27 =

LEARNING ACTIVITIES
Fill in the Blanks:

T aemevesssanises a problem means creating a problem

that has the original problem as a special case.
2. A ... is a pictorial representation showing all of
the steps of a process.

3. An......... is a finite step-by-step procedure to achieve a
required result.

4. Th® . wvsasen splits the list to be sorted into two equal
halves, and places them in separate arrays.

LET US SUM UP
At the end of this unit you have understood the Four Stages

of Problem Solving are
» Understand and explore the problem;
» Find a strategy;
» Use the strategy to solve the problem;
» Look back and reflect on the solution.

An algorithm is a set of rules for carrying out calculation either
by hand or on a machine.

v' An algorithm is a finite step-by-step procedure to

achieve a required result.

ANSWER TO LEARNING ACTIVITIES
Fill in the Blanks:

1. Generalizing

2. Flow chart
3. Algorithm
4. Merge sort

28

MODEL QUESTIONS

1. What is an Input device? Give 3-example‘r‘.

2. What is an Output device? Give 3 examples

3. Where do we save the results of the computers
processing for later use?

4. What are the 2 main types of storage?

5. Where does the computer store information as it is
working?

6. Write the four stages of Problem Solving.

REFERENCES

T.W. Pratt— Programming Languages, Design and
Implementation — PHI
R.G. Dromey — How to solve it by Computer - PHI

29

UNIT -2

PROCEDURAL PROGRAMMING

Structure
Overview
Learning Objectives
2.1 Procedural programming
2.1.1 Procedures and Modularity
2.2 Linkers and Loaders
2.3 Elements of Real Programming Languages
2.4 Graphical User Interface
2.4.1 GUl vs. CLI
Let us sum up
Answer to Learning Activities

References

OVERVIEW

Procedural programming is a programming paradigm

based upon the concept of the procedure call. Procedures,
also known as routines, subroutines, methods, or functions (not
to be confused with mathematidal functions, but similar to those
used in functional programming) simply contain a series of
computational steps to be carried out. Any given procedure
might be called at any point during a program's execution,
including by other procedures or it.

LEARNING OBJECTIVES

After completing this unit, you should be able to:

% Understand the Procedural programming
% Understand the Linkers and Loaders & DeadlLock

30

% Familiar with Elements of Real Programming Languages
% Know the Graphical User Interface

2.1 PROCEDURAL PROGRAMMING

Procedural programming is often a better choice than

simple sequential or unstructured programming in many
situations which involve moderate complexity or which require
significant ease of maintainability. Possible benefits:

« The ability to re-use the same code at different places in
the program without copying it. |

« An easier way to keep track of program flow than a
collection of "GOTQ" or "JUMP" statements. (Which can
turn a large, complicated program into so-called
"spaghetti code".) |

« The ability to be strongly modular or structured.

2.1.1 Procedures and Modularity

Especially in large, complicated programs, modularity is
often a desirable property. It can- be implefnéntedﬁn using
procedureé that have strictly defined cha-nnels for input and
output, andn usually also clear rules about what typés of input
and output are allowed or expected. Inputs are usually
specified syntactically-in the form of arguments and the outputs

delivered as return values.

Scoping is another technique that helps keep
procedures strongly modular. It prevents the procedure from
acceséing the variables of other procedures (and vice-versa),
including previous instances of itself, without éxplicit
authorization. This helps prevent confusion between variables

31

with the same name being used in different places, and

prevents procedures from stepping on each other's feet.

Less modular procedures, often used in small or quickly
written programs tend to interact with a large number of
variables in the execution environment, which other procedures
might also modify. The fact that lots of variables act as points of
contact between various parts of the program is what makes it
less modular. Because of the ability to specify a simple
interface, to be self-contained, and to be reused, procedures
are a convenient vehicle for making pieces of code written by
different people or different groups, including through
programming libraries.

(See Module (programming) and Software package.)

Comparison with imperative programming

Most or all extent procedural programming languages
are also imperative languages, because they make explicit
references to the state of the execution environment. This could
be anything from variables (which may correspond to processor
registers) to something like the position of the "turtle" in the
Logo programming language (which could be anything from a
cursor on the screen to an actual device which moves around
on the floor of a room).

Some imperative programming forms, such as object-
oriented programming, are not necessarily procedural.

Comparison with object-oriented programming

More sophisticated forms of modularity are possible with
object-oriented programming, which is a more recent invention.
Instead of dealing with procedures, inputs, and outputs, object-

oriented programs pass around objects. Computation is

32

accomplished by asking an object to execute one of its internal
procedures (or one it has inherited), possibly drawing on some

of its internal state.
Procedural programming languages

Procedural programming languages facilitate the
programmer's task in following a procedural programming
apprbach. The canonical example of a procedural programming
language is ALGOL. Others incl'ude Fortran, PL/l, Modula-2,
and Ada. This list includes some languages that aren't
exclusively procedural, such as Java, which was designed

specifically for object-oriented programming.

e Ada

« BASIC
e C ?
« COBOL
e Fortran

2.2 LINKERS AND LOADERS

"o The job of a Linker is to combine more than one-

‘separately assembled object files into one executable file.

. Differencev between an object file and an exécdtable
program: Whereas a single object file might contain
machine code for only one procedure or a set of
procedures, an executable file must contain all the
machine code needed for a particular program; it must
contain the address of the first instruction to be executed.

« The job of a loader then is to copy an executab|e file
into memory and initialize the PC reglster to the address

of the first instruction.

33

» When the program finishes, control must somehow be
returned to the operating system.

Definition:

Linker:
A program that takes as input the object code files of
one or more separately compiled program modules, and
links them together into a complete executable program,
resolving references from one module to another.

Loader:

A program that takes as input an executable program,
loads it into main memory, and causes execution to
begin by loading the correct starting address into the PC
register.

2.3 ELEMENTS OF REAL PROGRAMMING
LANGUAGES

There are several elements which programming

languages, and programs written in them, typically contain.
These elements are found in all languages, not just C. If you
understand these elements and what they're for, not only will
you understand C better, but you'll also find learning other
programming languages, and moving between different

programming languages, much easier.

1. There are variables or objects, in which you can store
the pieces of data that a program is working on.
Variables are the way we talk about memory locations
(data), and are analogous to the '‘registers" in our
pocket calculator example. Variables may be global (that

34

is, accessible anywhere in a program) or local (that is,

private to certain parts of a program).

There are expressions, which compute new values

from old ones.

There are assignments which store values (of
expressions, or other variables) into variables. In many
languages, assignment is indicated by an equals sign;

thus, we might have

b=3
or
c=d+e+1

The first sets the variable b to 3; the second sets the
variable ¢ to the sum of the variables d plus e plus 1.
The use of an equals sign can be mildly confusing at
first. In mathematics, an equals sign indicates equality:
two things are stated to be inherently equal, for all time.
In programming, there's a time element, and a notion of
cause-and-effect: after the assignment, the thing on the
left-hand side of the assignment statement is equal to
what the stuff on the right-hand side was before. To
remind yourself of this meaning, you might want to read
the equals sign in an assignment as "‘gets" or
“receives": a=3 means agets 3" or a receives 3."

(A few programming languages use a left arrow for
assignment

a<--3

to make the “‘receives" relation obvious, but this notation
is not too popular, if for no other reason than that few

character sets have left arrows in them, and the left

35

192

36

arrow key on the keyboard usually moves the cursor
rather than typing a left arrow). [If assignment seems

natural and un confusing so far, consider the line
i=i+1

What can this mean? In algebra, we'd subtract i from

both sides and end up with
=1

This doesn’'t make much sense. In

programming, however, lines like
i=i+1

are extremely common, and as long as we remember
how assignment works, they're not too hard to
understand: the variable i receives (its new value is), as
always, what we get when we evaluate the expression
on the right-hand side. The expression says to fetch i's
(old) value, and add 1 to it, and this new value is what
will get stored into . Soi =i+ 1 adds 1 to i; we say that
it increments i. (We'll eventually see that, in C,

assignments are just another kind of expression.)

There are conditionals which can be used to determine
whether some condition is true, such as whether one
number is greater than another. (In some languages,
including C, conditionals are actually expressions which

compare two values and compute a “true" or ““false" value.)

Variables and expressions may have types, indicating
the nature of the expected values. For instance, you

might declare that one variable is expected to hold a

number, and that another is expected to hold a piece of
text. In many languages (including C), your declarations
of the names of the variables you plan to use and what
types you expect them to hold must be explicit. There
are all sorts of data types handled by various computer
languages. There are single characters, integers, and
“real" (floating point) numbers. There are text strings
(i.e. strings of several characters), and there are arrays
of integers, reals, or other types. There are types which
reference (point at) values of other types. Finally, there
may be user-defined data types, such as structures or
records, which allow the programmer to build a more
complicated data structure, describing a more
complicated object, by accreting together several simpler

types (or even other user-defined types).

There are statements which contain instructions
describing what a program actually does. Statements
may compute expressions, perform assignments, or call

functions (see below).

There are control flow constructs which determine what
order statements are performed in. A certain statement
might be performed only if a condition is true. A sequence
of several statements might be repeated over and over,

until some condition is met; this is called a loop.

An entire set of statements, declarations, and control
flow constructs can be lumped together into a function
(also called routine, subroutine, or procedure) which
another piece of code can then call as a unit. When you

call a function, you transfer control to it and wait for it to

i}

do its job, after which it returns to you; it may also return
a value as a result of what it has done. You may also
pass values to the function on which it will operate or

which otherwise direct its work.

Placing code into functions not only avoids repetition if the
same sequence of actions must be performed at several places
within a program, but it also makes programs easy to
understand, because you can see that some function is being
called, and performing some (presumably) well-defined
subtask, without always concerning yourself with the details of
how that function does its job. (If you've ever done any knitting,
you know that knitting instructions are often written with little
sub-instructions or patterns which describe a sequence of
stitches which is to be performed multiple times during the
course of the main piece. These sub-instructions are very much

like function calls in programming.)

9. A set of functions, global variables, and other elements
makes up a program. An additional wrinkle is that the
source code for a program may be distributed among
one or more source files. (In the other direction, it is
also common for a suite of related programs to work
closely together to perform some larger task, but we'll

not worry about that “"large scale integration" for now.)

10. In the process of specifying a program in a form suitable
for a compiler, there are usually a few logistical details to
keep track of. These details may involve the
specification of compiler parameters or
interdependencies between different functions and other

parts of the program. Specifying these details often

38

involves miscellaneous syntax which doesn't fall into any
of the other categories listed here, and which we might
lump together as ““boilerplate."

Many of these elements exist in a hierarchy. A program
typically consists of functions and global variables; a function is
made up of statements; statements usually contain
expressions; expressions operate on objects. (It is also
possible to extend the hierarchy in the other direction; for
instance, sometimes several interrelated but distinct programs
are assembled into a suite, and used in concert to perform
complex tasks. The various " office" packages--integrated word
processor, spreadsheet, etc.--are an example.)

As we mentioned, many of the conc;pts in programming
are somewhat arbitrary. This is particularly so for the terms
expression, statément, and function. All of these could be
defined as “‘an element of a program that actually does
something." The differences are mainly in the level at which the
“something" is done, and it's not necessary at this point to
define thdse “levels." We'll come to understand them as we

begin to write programs.

An analogy may help: Just as a book is composed of
chapters which are composed of sections which are composed
of paragraphs which are composed of sentences which are
composed of words (which are composed of letters), so is a
prog'ram ‘composed of functions which are composed of
statements which are composed of expressions (which are in
fact composed of smaller elements which we won't bother to
define). ﬁinalogies are never perfect, though, and this one is
weaker than most; it still doesn't tell us 'ahlything about what

39

expressions, statements, and functions really are. If
“expression” and “‘statement" and “‘function" seem like totally
arbitrary words to you, use the analogy to understand that what
they are arbitrary words describing arbitrary levels in the
hierarchical composition of a program, jdst as 'sentence,"
“paragraph,"” and “‘chapter" are different levels of structure
within a book.

The preceding discussion has been in very general
terms, describing features common to most ““conventional"
computer languages. If you understand these elements at a
relatively abstract level, then learning a new computer
language becomes a relatively simple matter of finding out how
that language implements each of the elements. (Of course,
you can't understand these abstract elements in isolation; it
helps to have concrete examples to map them to. If you've
never programmed before, most of this section has probably
seemed like words without meaning. Don't spend too much
time trying to glean all the rheaning, but do‘ come back and
reread this handout after you've started to learn the details of a

particular programming language such as C.)

Finally, there's no need to overdo the abstraction. For
the simple programs we'll be writing, in a language like C, the
series of calculations and other operations that actually takes
place as our program runs is a simpleminded translation (into
terms the computer can understand) of the expressions,
statements, functions, and other elements of the program.
Expreséions are evaluated and their results assigned to
variables. Statements are executed one after the other, except
when the control flow is modified by if/then conditionals and

40

loops. Functions are called to perform subtasks, and return
values to their callers, which have been waiting for them.

2.4 GRAPHICAL USER INTERFACE
Abbreviated GU! (pronounced GOO-ee). A program

interface that takes advantage of the computer's graphics
capabilities to make the program easier to use. Well-designed
graphical user interfaces can free the user from learning complex
command languages. On the other hand, many users find that
they work more effectively with a command-driven interface,
especially if they already know the command language.

Graphical user interfaces, such as Microsoft Windows and the
one used by the Apple Macintosh, feature the following basic

components:

> Pointer: A symbol that appears on the display screen
and that you move to select objects and commands.
Usually, the pointer appears as a small angled arrow.
Text -processing applications, however, use an /-beam
pointer that is shaped like a capital /.

> Pointing device: A device, such as a mouse or
trackball that enables you to select objects on the

display screen.

> lcons: Small pictures that represent commands, files,
or windows. By moving the pointer to the icon and

- ‘pressing a mouse button, you can execute a command

or convert the icon into a window. You can also move

the icons around the display screen as if they were real

objects on your desk.

41

» Desktop: The area on the display screen where icons
are grouped is often referred to as the desktop
because the icons are intended to represent real
objects on a real desktop.

» Windows: You can divide the screen into different
areas. In each window, you can run a different
program or display a different file. You can move
windows around the display screen, and change their

shape and size at will.

> Menus: Most graphical user interfaces let you execute

commands by selecting a choice from a menu.

The first graphical user interface was designed by Xerox
Corporation's Palo Alto Research Center in the 1970s, but it
was not until the 1980s and the emergence of the Apple
Macintosh that graphical user interfaces became popular. One
reason for their slow acceptance was the fact that they require
considerable CPU power and a high-quality monitor, which until
recently were prohibitively expensive.

In addition to their visual components, graphical user
interfaces also make it easier to move data from one
application to another. A true GUI includes standard formats for
representing text and graphics. Because the formats are well-
defined, different programs that run under a common GUI can
share data. This makes it possible, for example, to copy a
graph created by a spreadsheet program into a document
created by a word- processor.

Many DOS programs include some features of GUlIs,
such as menus, but are not graphics based. Such interfaces

42

are sometimes called graphical character-based user interfaces
to distinguish them from true GUIs.

Types of GUIs

GUIs that are not PUls are most notably found in
computer games, and advanced GUIs based on virtual reality
are now frequently found in research. Many research groups in
North America and Europe are currently working on the
Zooming User Interface or ZUI, which is a logical advancement
on the GUI, blending some 3D movement with 2D or "2 and a

half D" vectorial objects.

Some GUIs are designed for the rigorous requirements of
vertical markets. These are known as "application specific
GUlIs." One example of such an application specific GUI is the
now familiar touchscreen point of sale software found in
restaurants worldwide and being introduced into self-service
retail checkouts. First pioneered by Gene Mosher on-the Atari
ST computer in 1986, the application specific touchscreen GUI
has spearheaded a worldwide revolution in the use of computers
throughou-tthevfood & beverage industry and in general retail.

Other examples of application specific touchscreen GUIs
include the most recent automatic teller machines, airline self-
ticketing, information kiosks and the monitor/control screens in
embedded industrial applications ‘which employ a real time
operating sys_t‘em (RTOS). The latest cell phones and'handheld
game systems also employ application specific touchscreen GUI. -

2.4.1 GUl vs. CLI

GUIs were introduced in reaction to the steep learning.
curve of Command Line Interfaces (CLI), text-based user

43

interfaces requiring commands to be typed on the keyboard.
Since the command words in CLIs are usually numerous and
composable, very complicated operations can be invoked using
a relatively short sequence of words and symbols. This leads to
high levels of efficiency once the many commands are learned,
but reaching this level can take a while because the command
words aren't eésily discoverable. WIMPs, on the other hand,
present the user with numerous widgets that represent and can
trigger some of the system's available commands.

WIMPs extensively use modes as the meaning of all
keys and clicks on specific positions on the screen are
redefined all the time. CLIs use modes only in the form of a
current directory.

Most modern operating systems provide both a GUI and
a CLI, although the GUIs usually receive more attention. The
GUI is usually WIMP based, although occasionally other
metaphors surface, such as Microsoft Bob, 3dwm or (partially)
FSV. Applications may also provide both interfaces, and when
they do the GUI is usually a WIMP wrapper around the CLI
version. The iatter used to be implemented first because it
allowed the developers to focus exclusive[y on their product's
functionality without bothering about interface details such as
designing icons and placing buttons. Nowadays, the GUI is no
ionger an optional part of a successful applicﬁation because
users have grown accustomed to the ease of use provided by
their familiar GUIs.

44

LEARNING ACTIVITIES

Fill in the Blanks :
i P — is a'programming paradigm based upon
the concept of the procedure call.
& i is another technique that helps keep procedures
strongly modular.
3. The job of a is to combine more than one
separately assembled object files into one executable

file.

LET US SUM UP
At the end of this unit you have understood the Procedural

programming, the job of a Linker, the job of a Loader, Graphical

User Interface,

ANSWER TO LEARNING ACTIVITIES
Fill in the Blanks:

1. Procedural programming

2. Scoping
3. Linker

MODEL QUESTION
1. Distinction between two types of scheduling:

REFERENCES
T.W. Pratt - Programming Languages, Design and

Implementation — PHI
R.G. Dromey — How to solve it by Computer - FHI

45

UNIT -3

OPERATING SYSTEMS

Structure
Overview
Learning Objectives
3.1 Introduction to Operating Systems
3.1.1 Operating System Concepts
3.2 Process Management
3.2.1 Multiprogramming
3.2.2 Multi-tasking
3.2.3 Time Sharing
3.2.4 CPU Scheduling
3.3 Introduction to Deadlock
3.3.1 Conditions for Deadlock
3.3.2 Deadlock Modeling
3.3.3 Deadlock Avoidance
Let us sum up
Answer to Learning Activities
References

OVERVIEW
Computer software can be divided roughly into two

kinds. System programs, which manages the operation of the
computer itself, and application programs, which perform the
actual work the user wants. The most fundamental system
program is the Operating System. The interface between the
Operating system and the user programs is defined by the set
of “extended instructions” that the bperating system provides.

46

LEARNING OBJECTIVES

After completing this unit, you would be competent enough to:

% Understand the Operating Systems and Process
Management

< Know the Conditions for Deadlock, Modeling and
Avoidance

3.1 INTRODUCTION TO OPERATING SYSTEMS

This part presents the principal operation of an operating

system as well as the usage of modern operating systems. It
briefly describes the history, the basic components and utilities
to support program development.

An operating system is a program that acts as an
interface between a user of a computer and the computer
hardware. The purpose of an operating system is to provide an
environment in which a user may execute programs. An
operating system is an important part of almost every computer
system. A computer system can roughly be divided into three

components:
¢ The hardware (memory, CPU, arithmetic-logic unit,
various bulk storage, I/O, peripheral devices...)

¢ Systems programs (operating system, compilers,
editors, loaders, utilities...)

¢ Application programs (database systems, business

programs...)

47

A computer system can be described or shown in Fig. 3.1

" =

| 1

G Editor Loader Mail pplication
Conpiles Handler | bnd Utilities

Operating system

|

Computer Hardware

Application
Programs

Systems
Programs

Fig. 3.1 Conceptual view of a computer system

The central processing unit. (CPU) is located on chips
inside the system unit. The CPU is the brain of the computer.
This is the place where the computer interprets and prbcesses
information.

The operating system is the first component of the
systems programs that interests us here. Systems programs
are programs written for direct execution on computer hardware
in order to make the power of the computer fully and efficiently
accessible to applications programmers and other computer
users. Systems programming is different from application
programming because it requires an intimate knowledge of the
computer hardware as well as the end users’ needs. Moreover,

systems programs are often large and more complex than

48

application programs, although that is not always the case.
Since systems programs provide the foundation upon which
application programs are built, it is most important.that systems
programs are reliable, efficient and correct.

In a computer system the hardware provides the basic
computing resources. The applications programs define the way
in which these resources are used to solve the computing
problems of the users. The operating system controls and
coordinates the use of the hardware among the various systems
programs and application programs for the various users.

The basic resources of a' computer system are provided
by its, hardware, software and data. The operating system
provides the means for the proper use of these resources in the
operation of the computer system. It simply provides an

environment within which other programs can do useful work.

We can view an operating system as a resource Allocator.
A computer system has many resources (hardware and software)
that may be required to solve a problem: CPU time, memory
space, files storage space, input/outpuﬂdevices etc.

The operating system acts as the manager of these
resources and allocates them toi specific programs and users
as necessary for their tasks. Sihce’,there may be many,
possibly conflicting, requests for resources, the operating
system must decide which requests dre’ allocated resources to
operate the computer system falr,y a eﬁ" iciently. An operating
system is a control program. ThIS program controls the
execution of user programs to prevent errors and improper use

of the computer.

49

Operating systems exist because they are a reasonable
way to solve the problem of creating a usable computing
system. The fundamental goal of a computer system is to

execute user programs and solve user problems.

The primary goal of an operating system is a convenience
for the user. Operating systems exit because they are supposed
to make it easier to compute with an operating system than
without an operating system. This is particularly clear when you
look at operating system for small personal computers.

A secondary goal is the efficient operation of a computer
system. This goal is particularly important for large, shared
multi-user systems. Operating systems can solve this goal. It is
known that sometimes these two goals, convenience and

efficiency, are contradictory.

While there is no universally agreed upon definition of
the concept of an operating system, we offer the following asa
reasonable starting point:

A computer’s operating system (OS) is a group of programs
designed to serve two basic purposes:

1. To control the allocation and use of the computing
system’s resources among the various users and

tasks, and.

2. To provide an interface between the computer
hardware and the programmer that simplifies and
makes feasible the creation, coding, debugging, and
maintenance of application programs.

- Specifically, we can imagine that an effective operating system
should accomplish all of the following:

50

Facilitate creation and modification of program and
data files through an editor program,

Provide access to compilers to translate programs
from high-level languages to machine language,

Provide a loader program to move the compiled
program code to the computer's memory for execution,

Provide routines that handle the intricate details of /O
programming,

Assure that when there are several active processes in
the computer, each will get fair and no interfering

access to the central processing unit for execution,
Take care of storage and device allocation,

Provide for long term storage of user information in the
form of files, and

Permit system resources to be shared among users
when appropriate, and be protected from unauthorized

or mischievous intervention as necessary.

Though systems programs such as editor and translators

and the various utility programs (such as sort and file transfer

program) are not usually considered part of the operating

system, the operating system is responsible for providing

access to these system resources.

3.1.1 Operating System Concepts

An operating system provides the environment within

programs are executed. To construct such an

environment, the system is partitioned into smali modules with

51

a well-defined interface. The design of a new operating system
is a major task. It is very important that the goals of the system
be will defined before the design begins. The type of system
desired is the foundation for choices between various

algorithms and strategies that will be necessary.

A system as large and complex as an operating system can
only be created by partitioning it into smaller pieces. Each of these
pieces should be a well defined portion of the system with carefully
defined inputs, outputs, and function. Obviously, not all systems
have the same struéture. However, many modern operating

systems share the system components outlined below.
1. Process Management

The CPU exseutes a large number of programs. While
its main concern is the execution of user programs, the CPU is
also needed for other system activities. These activities are
called processes. A process is a program in -execution.
Typically, a batch job ,il's a process. A time-shared user program
is a process. A sys‘tem task, such as spooling, is also a
process. For now, a process may be considered as a job or a
time-shared program; but the concept is actually more general.

In general, a process will need certain resources such as
CPU time, memory, files, 1/0 de.vices, etc., to accomplish its
task. These resources are given to the process when it is
created. In addition to the various physical and logical
resources that a process obtains when it's created; some
initialization data (input) may be passed along. For example, a
process whose function is to display on the screen of a terminal
the status of a file, say F1, will get as an input the name of the

52

file F1 and execute the appropriate program to obtain the
desired information.

We emphasize that a program by itself is not a process;
a program is a passive entity, while a process is an active
entity. It is known that two processes may be associated with
the same program; they are nevertheless considered two
separate execution sequences.

A process is the unit of work in a system. Such a system
consists of a collection of processes, some of which are operating
system processes, those that execute system code, and the rest
being user processes, those that execute user code. All of those
processes can potentially execute concurrently.

The operating system is responsible for the following
activities in connection with processes managed.

e The creation and deletion of both user and system
processes
e The suspension is resumption of processes.
e The provision of mechanisms for process
synchronization
e The provision of mechanisms for deadlock handling.
2. Memory Management

Memory is centfal to the operation of a modern
computer system. Memory is a large array of words or bytes,
each with its own address. Interaction is achieved through a
sequence of reads or writes of specific memory address. The
CPU fetdhes from and stores in memory.

In order for a program to be executed it must be mapped
to absolute addresses and loaded in to memory. As the

53

program executes, it accesses 'program instructions and data
from memory by generating these absolute is declared
available, and the next program may be loaded and executed.

In order to improve both the utilization of CPU and the
speed of the compote’s response to its users, Several
processes must be kept in memory. There are many different
algorithms depends on the particular situation. Selection of a
memory management scheme for a specific system depends
‘upon many factor, but especially upon the hardware design of
the system. Each algorithm requires its own hardware support.

The operating system is responsible for the following
activities in connection with memory management.

e Keep track of which parts of memory are currently
being used and by whom.
e Decide which processes are to be loaded into memory
when memory space becomes available.
e Allocate and reallocate memory space as needed.
Memory management techniques will be discussed in
great detail in section 8.

3. Secondary Storage Management

The main purpose of a computer system is to execute
programs. These programs, together with the data they access,
must be in main memory during execution. Since the 'v'm‘ain
memory is too small to permanently accommodate all data and
program, the computer system must provide secondary storage
to backup main memory. Most modem computer systems use
disks as the primary on-line storage of information, of both
programs and data. Most programs, like compilers, assemblers,

54

sort routines, editors, formatters, and so on, are stored on the
disk until loaded into memory, and then use the disk as both
the source and destination of their processing. Hence the
proper management of disk storage is of central importance to
a computer system.

There are few alternatives. Magnetic tape systems are
generally too slow. In addition, they are limited to sequential
access. Thus tapes are more suited for storing infrequently
used files, where speed is not a primary concern.

The operating system is responsible for the following
activities in connection with disk management

¢ Free space management
e Storage allocation
e Disk scheduling.

4. 1/0 System

One of the purposes of an operating system is to hide
the peculiarities OS specific hardware devices form the user.
For example, in Unix, the peculiarities of 1/0O devices are hidden
from the bulk of the operating system itself by the I/O system.
The 1/O system consists of:

¢ A buffer caching system
e A general device driver code
e Drivers for specific hardware devices.

Only the device driver knows the peculiarities of a specific
device.

We will discuss the 1/0 system in great length in unit 7.

55

5. File Management

File management is one of the most visible services of
an operating system. Computers can store information in
several different physical forms; magnetic tape, disk, and drum
are the most common forms. Each of these devices has it own
characteristics and physical organization.

For convenient use of the computer system, the
operating system provides a uniform logical view of information
storage. The operating system abstracts from the physical
properﬁes of its storage devices to define a logical storage unit,
the file. Files are mapped, by the operating system, onto
physical devices.

A file is a collection of related information defined by its
creator. Commonly, files represent prbgfams (both source and
object forms) and data. Data files may be numeric, alphabetic
or alphanumeric. Files may be free form, such as text files, or
may be rigidly formatted. In general a file is a sequence of bits,
bytes, lines or records whose meaning is deﬁned. by its creator

and user. It is a very general concept.

The operating system implements the abstract concept
of the file by managing mass storage device, such as types and
disks. Also files are normally organized into directories to ease
their use. Finally, when multiple users have access to files, it
may be desirable to control by whom and-in what ways files
may be accessed.

The operating system is responsible for the following
activities in connection with file management:

e The creation and deletion of files

56

e The creation and deletion of directory

e« The support of primitives for manipulating files and
directories

- o« The mapping of files onto disk storage.
o Backup of files on stable (non volatile) storage.
6. Protection System

The various processes in an operating system must be
protected from each other's activities. For that purpose, various
mechanisms which can be used to ensure that the files,
memory segment, CPU and other resources can be operated
on only by those processes that have gained proper
authorization from the operating system.

For example, memory addressing hardware ensures that
a process can only execute within its own address space. The
timer ensures that no process can gain control of the CPU
without relinquishing it. Finally, no process is allowed to do its
own /O, to protect the integrity of the various peripheral

devices.

Protection refers to a mechanism for controlling the
access of programs, processes, or users to the resources
defined by a computer controls to be imposed, together with

some means of enforcement.

Protection can improve reliability by detecting latent
errors at the interfaces between component subsystems. Early
detection of interface errors can often prevent contamination of
a healthy subsystem by a subsystem that is malfunctioning. An

57

unprotected resource cannot defend against use (or misuse) by
an unauthorized or incompetent user.

7. Networking

A distributed system is a collection of processors that do
not share memory or a clock. Instead, each processor has its
own local memory, and the processors communicated with
each other through various communication lines, such as high
speed buses or telephone lines. Distributed systems vary in
size and function. They may involve microprocessors,
workstations, minicomputers, and large general purpose

computer systems.

The processors in the system are connected through a
communication network, which can be configured in the
number of different ways. The network may be fully or partially
connected. The communication network design must consider
routing and connection strategies, and the problems of

connection and security.

A distributed system provides the user with access to the
various resources the system maintains. Access to a shared resource
allows computation speed-up, data availability, and reliability.

8. Command Interpreter System

One of the most important components of an operating
system is its command interpreter. The command interpreter is the
primary interface between the user and the rest of the system.

Many commands are given to the operating system by
control statements. When a new job is started in a batch
system or when a user logs-in to a time-shared system, a

58

program which reads and interprets control statements is
automatically executed. This program is variously called

(1) the control card interpreter, (2) the command line
interpreter, (3) the shell (in Unix), and so on. Its function is

quite simple: get the next command statement, and execute it.

The command statement themselves deal with process
management, /O handling, secondary storage management, main

memory management, file system access, protection, and networking.

In the following sections of this Chapter we show four
important components of the operating system. There are
process management, file organization, input/output, and
memory management,

3.2 PROCESS MANAGEMENT

The most central concept in any operating system is the
concept of process: an abstraction of a running program.
Everything else hinges on this concept, and it is important that
the operating system designer know what a process is as early

as possible.
3.2.1 Multi Programming

All modern computers can do several things at the same
time. While running a user program, a computer can also be
reading from a disk and printing on a terminal or a printer. In a
multiprogramming system, the CPU also switches from
program to program, running each for tens or hundreds of
milliseconds. While, strictly speaking, at any instant of time, the
CPU is running only one program, in the course of one second,

it may work on several programs, thus giving the users the

39

illusion of parallelism. Sometimes people speak of pseudo
parallelism to mean this rapid switching back and forth of the
CPU between programs, to contrast it with the true hardware
parallelism of the CPU computing while one or more 110
devices are running. Keeping track of multiple, parallel activities
is not easy. Therefore, over the years operating system
designers developed a model that makes parallelism easier to

deal with. This model is the subject of the following paragraphs.

60

Block 4 : Software Engmeenng Software Llfe Cycle - Role of software
engineer — Qualities of a soﬂware product - Pnncmles of software
engineering — Trends in Software Development.. - 4GL: and . Natural
Languages - System lnvestlgatlons ~ Control of System Investigations «
CaseTools i ks
Books of Reference: ? . :
1. T.W. Pratt - Programmlng Languages, Doslgn and Implementatlon—

i ol

2. R.G; Dromey ~ How tosolyo li by Computel‘ PHi Rl U7
3 Operatlng system Dasfgn and Implementatlon by Andrew s

Tanenbaum PHI

)

{ i ot

4. Software Engineering, Pressman

In this model, all the runnable this program, often
including the operating system is organized into a number of
sequential processes, or just processes for short. A process is
an executing program, including the current values of the
program counter, registers, and variables. Conceptually, each
proc'ess"has its own virtual CPU. In reality, of course, the real
CPU switches back and forth from process, but to understand
the systerﬁ, it is much easier to think about a collection of

how the CPU switches form program to program. This rapid
switching back and forth called multiprogramming, as we saw in
the previous section. In Fig. 3.2(@) an exampled
multiprogramming with four programs in given.

In F'ig. 3.2(b) we see how this is abstracted into four

process rur;ljning in (pseudo) parallel, than to try to keep track of
|

processes, 'each with its own flow of control (i.e., its own
program counter), and each one running independently of the
other ones! In Fig. 3.2(c) we see that over a long enough time

61

interval, all the processes have made progress, but at any
given instant only one process is actually running.

One program counter Four program counter

Process switch
< A D
B C
C A B C D B
D Al ===
TIME
3.2 (a) 3.2 (b) 3.2 (c)

Fig.3.2 Multiprogramming of four programs.

Conceptual model of four independent, sequential processes.
Only one program is active at any instant.

With the CPU switching back and forth among the
processes, the rate at which a process performs its
computation will not be uniform, and probably not even
reproducible if the same processes are run again. Thus,
processes must not be programmed with built-in assumptions
about timing. Consider, for example, an 1/O process that starts
to move a magnetic tape, executes an idle loop 1000 times to
let the tape get up to speed, and then issues a command to
read the first record. If the CPU decides to switch to another
process during the idle loop, the tape process' might not run
correctly. When a process has critical real-time requirements
like this, that is, certain events absolutely must occur within a
specified number of milliseconds, special measures must be
taken to ensure that they'do occur. Normally, however, most

62

processes are not affected by the underlying multiprogramming
of the CPU or the relative speeds of different processes.

The difference between a process and a program is
subtle, but crucial. An analogy may help make this point
clearer. Consider a culinary-minded computer scientist who is
baking a birthday cake for his daughter. He has a birthday cake
recipe and a kitchen well-stocked with the necessary input:
flour, eggs, sugar, and so on. In this analogy, the recipe is the
program (i.e., an algorithm expressed in some suitable
notation), the computer scientist is the processor (CPU), and
the cake ingredients are the input data. The process is the
activity consisting of our baker reading the recipe, fetching the

ingredients, and baking the cake.

Now imagine that the computer scientist's son comes
running in crying, saying that he has been stung by a bee. The
computer scientist records where he was in the recipe (the
state of the current process is saved), gets out a first aid book,
and begins following the directions in it. Here we see the
processor being switched from one process (baking) to a higher
priority process (administering medical care), each having a
different program (recipe vs. first aid book). When the bee sting
has been taken care of, the computer scientist goes back to his

cake, continuing at the point where he left off.

The key idea here is that a process is an activity of some
kind. It has a program, input, output, and a state. A single
processor may be shared among several processes, with some
scheduling algorithm being used to determine when to stop

work on one process and service a different one.

63

Process Hierarchies

Operating systems that support the process concept
muast provide some way to create all the processes needed. In
very simple systems, or in systems designed for running only a
single application, it may be possible to have all the processes
that will ever be needed be present when the system comes
up. In most systems, however, some way is needed to create
and destroy processes as needed during operation. In
operating systems, system calls exist to create a process, load
into memory, and start it running. Whatever the exact nature of
the system call, processes need a way to create other
processes. Note that each process has one parent but zero,
one, two, or more children.

Although each process is an independent entity, with its
own program counter and internal state, processes often need
to interact with other processes. One process may generate

some output that another process uses as input.

In Fig.3.3 we see a state diagram showing the three states a
process may be in: '

1. Running (actually using the CPU at the instant).

2. Blocked (unable to run untii some external event

happens).

3. Ready (runnable; temporarily stopped to let another

process run).

64

1. Process blocks for input

2. Scheduler picks an other
process

3. Scheduler picks thie process

4. Input becomes available

Fig. 3.3 A process can be in running, blocked or

ready (also called runnable) state

Four transitions are possible among these states, as
shown. Transition 1 occurs when a process discovers that it
cannot continue. In some systems the process must execute a
system call, BLOCK, to get into blocked state. In other systems,
when a process reads from a pipe or special file (e.g., a
terminal) and there is no input available, the process is

automatically blocked.

Transitions 2 and 3 are caused by the process
scheduler, a part of the operating system, without the process
even knowing about them. Transition 2 occurs when the
scheduler decides that the running process has run long
enough, and it is time to let another process have some CPU
time. Transition 3 occurs when all the other processes have
had their share and it is time for the first process to run again.
The subject of scheduling, that is, deciding which process
should run when and for how long, is an important one; we will
look at it later in this unit. Many algorithms have been devised
to try to balance the competing demands of efficiency for the

systems as a whole and fairness to individual processes.

65

Transition 4 occurs when the external event for which a
process was waiting (such as the arrival of some input)
happens. If no other process is running at that instant, transition
3 will be triggered immediately, and the process will start
running. Otherwise it may have to wait in ready state for a little
while until the CPU is available.

Using the process model, it become much easier to think
about what is going on inside the system. Some of the
processes run programs that carry out commands typed in by a
user. Other processes are part of the system and handle tasks
such as carrying out requests for file services or managing the
details of running a disk or a tape drive. When for example, a
disk interrupt occurs, the system makes a decision to stop
running the current process and run the disk process, which
was blocked waiting for that interrupt. Thus, instead of thinking
about interrupts, we can think about user processes, disk
processes, terminal processes, and so on, which block when
they are waiting for something to happen. When the disk has
been read or the character typed, the process waiting for it is
unblocked and is eligible to run again.

To implement the process model, the operating system
maintains a table (an array of structures), called the process
table, with one entry per process. This entry contains
information about the process state, its program counter, stack
pointer, memory allocation, the status of its open files, its
accounting and scheduling information, and everything else
about the process that must be saved when the process is
switched from running to ready state so that it can be restated

later as if it had never been stopped.

66

In operating systems the process management, memory
management, and file management are each handled by
separate modules within the system, so the process table is

partitioned, with each module maintaining the fields that is needs.
Standard Utilities

An operating system provides the appropriate
environment for the programs to be executed. In this section,
we consider what services an operating system provided, and
how these are provided. The collection of services provided by
the operating system is collect standard utilities. In the rest of
this section we present some standard utilities. Two of them are

system calls and systems programs.

The services provided for program and users differ from
one operating system to another, but there are some common
classes of services which can be identified. These operating
system functions are provided for the convenience of the

programmer to make the programming task easier.

e Program Execution: The system should be able
indicated that to load a program into memory and run it.
The program must be able to indicate that its execution

ended, either normally or abnormally.

e Input/Output Operations: A running program may
require input and output (1/0). This I1/O may involve a file
or an /O device. For the specific devices, special
functions may be desired (such as, rewind a tape drive,
and so on). Since a user program cannot execute 1/O
operations directly, the operating system must provide

some means to do so.

67

File System Manipulation: The file system is of
particular interest. Programs need to read and write files.
User need to create and delete files by name.

Error Detection: The operating system constantly needs
to be aware of possible errors. Errors may occur in the
CPU and memory hardware (such as a memory error OS
power failure), in I/O devices (such as a parity error on
tape, a card jam in the card reader, or the printer out of
paper), or in the user program (such as an arithmetic
overflow, an attempt to access illegal memory location, or
using too much CPU time). For each type of error, the

operating system should take the appropriate action.

In addition, another set of operating system functions

exist not for the user but for the efficient operation of the

system itself. Systems with multiple users can gain efficiency

by sharing the computer resources among the users.

68

Resource Allocation: When there are multiple users or
multiple jobs running at the same time, resources must
be allocated to each of them. Many different types of
resources are managed by the operating system. Some
(such as CPU cycles, main memory, and file storage)
may have special allocation code, while others (such as
I/O devices) may have much more general reqliest and

release code.

Accounting: We want to keep track of are used by
which user how much and what kinds of computer
resourceé. This record-keeping may be for the purpose
of paying for the system and its operation, or simply for

accumulating usage static’'s. Usage static’'s may be a
valuable tool in trying to configure the system to improve
computing services.

e Protection: The owners of information stored in a multi-
user computer system may want to control its use. When
several disjoint jobs read being executed simultaneously
in order to increase utilization, conflicting demands for
various resources need to be reconciled fairly and
scheduled reasonably.

System Calls

Since the actual mechanics of issuing a system call are
highly machine-dependent, and often must be expressed in
assembly code, a procedure library is provided to make it
possible to make system calls from high level language
program. System calls provide the interface between a running
program and the operating system.

Several languages, as C, PL/360, have been defined to
replace assembly language for systems programming. These
languages allow system calls to be made directly. Some Pascal
systems also provide an ability to make system calls directly from
Pascal program to the operating system. Most Fortran system

provide similar capabilities, often by a set of library routines.

As an example of how system calls are used, consider
writing a simple program to read data from one file and copy it
to another file. The fist think the program will need is the name
of the two files: the input file and output file. These can be
specified in two ways. One approach is for the program to ask
the user for the names of the two files. In an interactive system,

69

this will requite a sequence of system calls to. first write a
prompting message on the terminal, and then read from the
terminal the characters which define the two files. Another
approach, particularly used to batch system, is to specify the
names of the files with control card. In this case, there must be
a mechanism for passing these parameters from the control
cards to the executing program.

Once the two file names are obtained, the program must
open the input file and create the output file. Each of the
operations requires another system call. There are also
possible error conditions for each operation. When the program
tries to open the input file, it may find that there is no file of that
name of that the file is protected against access. In these
cases, the program should print a message on the console
(another system call). If the input file exists, then we must
create a new out file. We may find that there is already an
output file with the same name. This situation may cause the
program to abort (a system call), or we may delete the existing
file (another system call) and create a new one (another system
call). Another option, in an interactive system, is to ask the user
(a sequence of system calls to output the prompting message
“and read the response from the terminal) whether to replace

the existing file or abort.

Now that both files are set up, we enter a loop that reads
from the input files (s system call) and writes to the output file
(another system call). Each read and write must return status
information regarding various possible error conditions. On
input, the program may find that the end of the file has been
reached, or that there was a hardware failure in the read (such

70

as a parity error). The write operation may encounter various
errors, depending upon the output device (no more disk space,

physical end of tape, printer out of paper, and so on).

Finally, after the entire file is copied, the program may
close both files (another system call), write a message to the
console (more system calls) and finally terminal normally (the
last system call). As we can see, programs may make heavy
use of the operating system. All interactions between the
program and its environment must occur as the result of

requests from the program to the operating system.

Most users never see this level of detail, however. The
run-time supper system for most programming language
provides a much simpler interface. For example, a write
statement in Pascal or Fortran most likely is compiled into a call
to a run-time support routine that issues the necessary system
calls, check for errors, and finally returns to the user program.
Thus most of the detail of the operating system interface is
hidden from the user programmer by the compiler and its run-

time support package.

System calls occur in different ways, depending upon
the computer in use. Often more information is required than
simply the identity of the desired system call. The exact type
and amount of information varies according to the particular
operating system and call. For example, to read a carve image,
we may need to specify the file or device to use, and the
address and length of the memory buffer into which it should be
read. Of course, the device or file may be implicit in the call
and, if the card images are always 80 characters, we may not

need to specify the length.

71

Two general methods are used to pass parameters to the
operating system. The simplest approach is to pass the
parameters in register. However, in some access there may be
more parameters than registers. In this case the parameters
stored in a block or t able in memory, and the address of the block
is passed as a parameter in a registef (Figure 3.4). Some
operating system prefers this uniform interface, even when there

are enough registers for all of the parameter for most cases.

System calls can be roughly grouped into three major
categories, such as process OS job control, device and the file
manipulation, and information maintenance. In the following, we
summarize the types of system calls that may be provided by
an operating system.

Register
X
X: parameters
for call
|use parameters
from table X
load address X
SVC 13

Fig. 3.4 Passing parameter as a table

Fig. Summarizes
“9 Process Control
o End, Abort

9 Load, Execute

72

© Create Process, Terminate Process
e Get Process Attributes, Set Process Attribute
° Wait for Time
° Wait Event, Signal Event
¢ File Manipulation
° Create File, Delete File
5 Open/Close
P Read, Write, Reposition
° Get File Attributes, Set File Attribute
e Device Manipulation
9 Request Device, Release Device
- Read, Write, Reposition
° Get Device Attributes, Set Device Attribute
¢ Information Maintenance
° Get Time or Date, Set Time or Date
° Get System Data, Set System Data

. Get Process, File, or Device Attributes, Set
Process, File, or Device Attributes.

Systems Programs

Another aspect of a modern system is its collection of
systems programs. While we could write a program to copy one
file to another, as shown above, it is unlikely that we would want
to. In addition to the actual operating system monitor code, most
system supplies a large collection of systems programs to solve

75

common problems and provide a more convenient environment

for program development and execution.

Systems programs can be divided into several

categories. -

74

File Manipulation: These program create, delete, copy,
rename, print, dump, list, and generally manipulates files

and directories.

Status Information: Some program simply asks the
system for the date, time, amount of available memory
or disk space, number of users, or similar status
information. That information is then formatted and

printed to the terminal or other output device or file.

File Modification: Several text editors may be available

to create and modify the content of files stored on disk.

Programming Language Support: Compliers,
assemblers, and interpreters for common programming
language (such as for Pascal, Basic and so on) are often
provided with the operating system. Recently many of
these programs are being priced and provided separately.

Program Loading and Execution: Once a program is
assembled or compiled, it must be loaded into memory
to be executed. The system may provide absolute
loaders, relocatable loaders, linkage editors, and overlay
loaders. Debugging systems for either higher level
language or machine language are also needed.

3.2.2 Multi-Tasking

To make a multi-tasking OS we need loosely to
reproduce all of the features discussed in:the last chapter for
each task or process which runs. It is not necessary for each
task to have its own set of devices. The basic hardware
resources of the system are shared between the tasks. The
operating system must therefore have a ‘manager' which
shares resources at all times. This manager is called the
‘kernel' and it constitutes the main difference between single
and multitasking operating systems.

COMPETITION FOR RESOURCES
Users - authentication

If a system supports several users, then each user must
have his or her own place on the system disk, where files can
be stored. Since each user's files may be private, the file
system should record the owner of each file. For this to be
possible, all users must have a user identity or login hame and
must supply a password which prevents others from
impersonating them. Passwords are stored in a cryptographic
(coded) form. When a user logs in, the OS encrypts the typed
password and compares it to the stored version. Stored

passwords are never decrypted for comparison.
Privileges and Security

"On a multi-user system it is important that one user
should not be able to interfere with another user's activities,
either purposefully or accidentally. Certain commands and
system calls are therefore not available to normal users

directly. The super-user is a privileged user (normally the

75

system operator) who has permission to do anything, but
normal users have restrictions placed on them in the interest of

system safety.

For example: normal users should never be able to halt the
system; nor should they be able to control the devices
eonnected to the computer, or write directly into memory
without making a formal request of the OS. One of the tasks of
the OS is to prevent collisions between users. |

Tasks — two mode operation

It is crucial for the security of the system that different
tasks, working side by side, should not be allowed to interfere
with one another (although this occasionally happens in
microcomputer operating systems, like the Macintosh, which
allow several programs to be resident in memory
simultaneously). Protection mechanisms are needed to deal
with this problem. The way this is normally done is to make the
operating system all-powerful and allow no user to access the

system resources without going via the OS.

To prevent users from tricking the OS, multi-user
systems are based on hardware which supports two-mode
operation: privileged mode for executing OS instructions and
user mode for working on user programs. When running in user
mode a task has no spebial privileges and must ask the OS for
resources through system calls. When /O or resource
management is performed, the OS takes over and switches to
privileged mode. The OS switches between these modes
personally, so provided it starts off in control of the system, it

will always remain in control.

76

At boot-time, the system starts in privileged mode.
During user execution, it is switched to user mode.

When interrupts occur, the OS takes over and it is switched
back to privileged mode.

Other names for privileged mode are monitor mode or
supervisor mode.

110 and Memory protection

To prevent users from gaining control of devices, by
tricking the OS, a mechanism is required to prevent them from
writing to an arbitrary address in the memory. For example, if
the user could modify the OS program, then it would clearly be
possible to gain control of the entire system in privileged mode.
All a user would have to do would be to change the addresses
in the interrupt vector to point to a routine of their own making.
This routine would then be executed when an interrupt was
received in privileged mode.

The solution to this problem is to let the OS define a
segment of memory for each user process and to check, when
running in user mode, every address that the user program
refers to. If the user attempts to read or write outside this
allowed segment, a segmentation fault is generated and control
returns to the OS. This checking is normally hard-wired into the
hardware of the computer so that it cannot be switched off. No
checking is required in privileged mode.

19

//**

I

/I Example of a segmentation fault in user mode
I

/ e e e e ke ke o ke s e e ke e ok ok e e o ol ke ke ke ke o e o ok ke ke ok ke o ke ok o ke ok o ok ke o ok ok e e ok ok ok ok ke e ok ok o ok o ok e e ke ke ke e e ke

main() /I When we start, we are by definition in user
mode.

{int *ptr;

ptr = 0; // An address guaranteed to NOT be in our
segment.

cout << *ptr;
}
3.2.3 Time Sharing

There is always the problem in a multi-tasking system
that a user program will go into an infinite loop, so that control
never returns to the OS and the whole system stops. We have
to make sure that the OS always remains in control by some
method. Here are two possibilities:

The operating system fetches each instruction from the
user program and executes it personally, never giving it directly to
the CPU. The OS software switches between different processes
by fetching the instructions it decides to execute. This is a kind of
software emulation. This method works, but it is extremely
inefficient because the OS and the user program are always
running together. The full speed of the CPU is not realized. This

method is often used to make simulators and debuggers.

78

Hardware
Kernel

Operating
System

Fig. 3.5 Structure of kernel-based operating system

A more common method is to switch off the OS while the
user program is executing and switch off the user process while
the OS is executing. The switching is achieved by hardware
rather than software, as follows. When handing control to a
user program, the OS uses a hardware timer to ensure that
control will return after a certain time. The OS loads a fixed time
interval into the timer's control registers and gives control to the
user process. The timer then counts down to zero and when it
reaches zero it generates a non-mask able .interrupt,

whereupon control returns to the OS.

79

3.2.4 CPU Scheduling

Scheduling is a fundamental operating system function,
- since almost all computer resources are scheduled before use.
The CPU is, of course, one of the primary computer resources.
| Consequently, its scheduling is often performed in the

operating system.

The kernel-based design often is used for designing of the
operating system. The kernel (more appropriately called the
nucleus) is a collection of primitive facilities over which the rest
of the operating system is built, using the functions provided by
the .kernel (see Fig. 3.5). Thus, a kernel provides an environment
to build an operating system in which the designer has
cansiderable flexibility because policy and optimization decisions
are not made at the kernel level. An operating system is an
orderly growth of software over the kernel, where all decisions
regarding process scheduling, resource allocation, execution
environment, file system, and resource protection etc. are made.

Consequently, a kernel is a fundamental set of primitives
that allows the dynamic creation and control of process, as well
as communication among them. Thus, the kernel only supports
the notion of processes and does not include the concept of a
resource. However, as operating systems have matured in
functionality and complexity, more functionality has been
relegated to the kernel. A kernel should contain a minimal set of
functionality that is adequate to build an operating system with

a given set of objectives.

We shall make a broad distinction between two types of

scheduling:

80

Queuing: This is appropriate for serial or batch jobs like
print spooling and requests from a server. There are two
main ways of giving priority to the jobs in a queue. One
is a first-come first-served (FCFS) basis, also referred to
as first-in first-out (FIFO), the other is to process the
shortest job first (SJF).

Round-robin: This is the time-sharing approach in
which several tasks can coexist. The scheduler gives a
short time-slice to each job, before moving on to the next
job, polling each task round and round. This way, all the
tasks advance, little by little, on a controlled basis.

These two categories are also referred to as non-preemptive

and preemptive respectively, but there is a grey area.

Strictly non-preemptive: Each program continues
executing until it has finished, or until it must wait for an
event (.g. I/O or another task). This is like Windows 95
and Maclntosh system 7.

Strictly preemptive: The system decides how time is to
be shared between the tasks, and interrupts each
process after its time-slice whether it likes it or not. It
then executes another program for a fixed time and
stops, then the next...etc. .
Politely-preemptive? The system decides how time is
to be shared, but it will not interrupt a program if it is in a
critical section. Certain sections of a prégram may be so
important that they must be allowed to execute from start
to finish without being interrupted. This is like UNIX and

Windows NT.

81

To choose an algorithm for scheduling tasks we have to
understand what it is we are trying to achieve. i.e. What are the

criteria for scheduling?

We want to maximize the efficiency of the machine. i.e.
we would like all the resources of the machine to be
doing useful work all of the time - i.e. not be idling during
one process, when another process could be using
them. The key to organizing the resources is to get the
CPU time-sharing right, since this is the central “organ’
in any computer, through which almost everything must
happen. But this cannot be achieved without also
thinking about how the I/O devices must be shared,
since the I/O devices communicate by interrupting the
CPU from what it is doing. (Most workstations spend
most of their time idling. There are enormous amounts of
untapped CPU power going to waste all over the world

each day.)

We would like as many jobs to get finished as quickly as

possible.

Interactive users get irritated if the performance of the
machine seems slow. We would like the machine to
appear fast for interactive users - or have a fast

response time.

3.3 INTRODUCTION TO DEADLOCK

Deadlock can be defined formally as follows:

A set of processes is deadlocked if each process in the
set is waiting for an event that only another process in the set

can cause.

82

Because all the processes are waiting, none of them will
ever cause any of the events that could wake up any of the
other members of the set, and all the processes continue to
wait forever. For this model, we assume that processes have
only a single thread and that there are no interrupts possible to
wake up a blocked process. The no-interrupts condition is
needed to prevent an otherwise deadlocked process from being
awakened by, say, an alarm, and then causing events that

release other processes in the set.

In most cases, the event that each process is waiting for is
the release of some resource currently possessed by another
member of the set. In other words, each member of the set of
deadlocked processes is waiting for a resource that is owned by a
deadlocked process. None of the processes can run, none of them
can release any resources, and none of them can be awakened.
The number of processes and the number and kind of resources
possessed and requested are unimportant. This result holds for
any kind of resource, including both hardware and software.

3.3.1 Conditions for Deadlock

Coffman et al. (1971) showed that four conditions must hold for
there to be a deadlock:

1. Mutual exclusion condition: Each resource is either

currently assigned to exactly one process or is available.

2. Hold and wait condition: Processes currently holding

resources granted earlier can request new resources.

3. No preemption condition: Resources previously granted
cannot be forcibly taken away from a process. They must be
explicitly released by the process holding them.

83

4. Circular wait condition: There must be a circular chain of
two or more processes, each of which is waiting for a resource
held by the next member of the chain.

All four of these conditions must be present for a deadlock to

occur. If one of them is absent, no deadlock is possible.

It is worth noting that each condition relates to a policy that a
system can have or not have. Can a given resource be

assigned to more than one process at once?

Can a process hold a resource and ask for another? Can
resources be preempted?

Can circular waits exist? Later on we will see how deadlocks

can be attacked by trying to negate some of these conditions.
3.3.2 Deadlock Modeling

Holt (1972) showed how these four conditions can be
modeled using directed graphs. The graphs have two kinds of
nodes: processes, shown as circles, and resources, shown as
squares. An arc from a resource node (square) to a process
node (circle) means that the resource has previously been
requested by, granted to, and is currently held by that process.
In Fig. 3-6(a), resource R is currently assigned to process A.

® (=]

(a) (b} (e}

84

Figure 3-6. Resource allocation graphs. (a) Holding a resource.
(b) Requesting a resource. (¢) Deadlock.

An arc from a process to a resource means that the
process is currently blocked waiting for that resource. In
Fig.3-6(b), process B is waiting for resource S. In Fig. 3-6(c) we
see a deadlock: process C is waiting for resource T, which is
currently held by process D. Process D is not about to release
resource T because it is waiting for resource U, held by C. Both
processes will wait forever. A cycle in the graph means that
there is a deadlock involving the processes and resources in
the cycle (assuming that there is one resource of each kind). In
this example, the cycle is C-T-D-U-C.

Now let us look at an example of how resource graphs
can be used. Imagine that we have three processes, A, B, and
C, and three resourées, R, S, and T. The requests and releases
of the three processes are given in Fig. 3-6(a)-(c). The
operating system is free to run any unblocked process at any
instant, so it could decide to run A until A finished all its work,
then run B to completion, and finally run C.

This ordering does not lead to any deadlocks (because
there is no competition for resources) but it also has no
parallelism at all. In addition to requesting and releasing
resources, processes compute and do /0. When the
processes are run sequentially, there is no possibility that while
one process is waiting for /O, another can use the CPU. Thus
running the processes strictly sequentially may not be optimal.
On the other hand, if none of the processes do any I/O at all,
shortest job first is better than round robin, so under some
circumstances running all processes sequentially may be the

best way.

85

Let us now suppose that the processes do both I/0 and
computing, so that round robin is a reasonable scheduling
algorithm. The resource requests might occur in the order of
Fig. 3-6(d). If these six requests are carried out in that order,
the six resulting resource graphs are shown in Fig. 3-6(e)-(j).
After request 4 has been made, A blocks waiting for S, as

‘shown in Fig. 3-6(h).

A B C
Reques Reguest
g:::‘:::: g m:$ Hoquost;
e i s
a) {b) {©)
l.ArgqueslsR
e @ @@ OO OO
4. A requests S
0
e ol A] [5] (7] [5]
L)) ? 1))

) ®)

WO - ®EE
(] (] (0] (7] [s] [7] i.'
) U}
@

1. Arequests R

2C)
%ﬁm‘;i ® © O ®© (™) ®
Temae. FIEIE FAED HEGS

5. Areleases R
%) {h {m) {n)

DO OO, O @

) mEny)

(o) (] Q)

An exaniple ut how deadlnek veeurs and how it can be avouded.

In the next two steps B and C also block, ultimately leading
to a cycle and the deadlock of Fig. 3-6(j). However, as we have

86

already mentioned, the operating system is not required to run the
processes in any special order. In particular, if granting a
particular request might lead to deadlock, the operating system
can simply suspend the process without granting the request (i.e.,
just not schedule the process) until it is safe.

In Fig. 3-6, if the operating system knew about the
impending deadlock, it could suspend B instead of granting it S.
By running only A and C, we would get the requests and releases
of Fig. 3-6(k) instead of Fig. 3-6(d). This sequence leads to the
resource graphs of Fig. 3-8(I)-(q), which do not lead to deadlock.
After step (q), process B can be granted S because A is finished
and C has everything it needs. Even if B should eventually block
when requesting T, no deadlock can occur. B will just wait until C
is finished. For the moment, the point to understand is that
resource graphs are a tool that let us see if a given
request/release sequence leads to deadlock. We just carry out
the requests and releases step by step, and after every step
check the graph to see if it contains any cycles. If so, we have a
~ deadlock; if not, there is no deadlock. Although our treatment of
resource graphs has been for the case of a single resource of
each type, resource graphs can also be generalized to handie
multiple resources of the same type (Holt, 1972).

In general, four strategies are used for dealing with deadlocks.

1. Just ignore the problem altogether. Maybe if you ignore it, it

will ignore you.

2. Detection and recovery. Let deadlocks occur, detect them,

and take action.

3. Dynamic avoidance by careful resource allocation.

87

4. Prevention, by structurally negating one of the four
conditions necessary to cause a deadlock.

3.3.3 Deadlock Avoidance

This approach to the deadlock problem anticipates
deadlock before it actually occurs. This approach employs an
algorithm to access the possibility that deadlock could occur
and acting accordingly. This method differs from deadlock
prevention, which guarantees that deadlock cannot occur by
denying one of the necessary conditions of deadlock.

If the necessary conditions for a deadlock are in place, it
is still possible to avoid deadlock by being careful when
resources are allocated. Perhaps the most famous deadlock
avoidance algorithm, due to Dijkstra [1965], is the Banker's
algorithm. So named because the process is analogous to that
used by a banker in deciding if a loan can be safely made.
Banker’s Algorithm

In this analogy Customers Used Max

A 0 6
Customers=Processes B 0 5 hveiisiie
. resources, C 0 4 Units =10
Units=)
say, tape drive D 0 7
Operatin i9.3.7
Banker= P g raE-ia)
System

In the above figure, we see four customers each of whom has
been granted a number of credit nits. The banker reserved only
10 units rather than 22 units to service them. At certain
moment, the situation becomes

88

Customers Used Max Safe State The key to a

A 1 8 Availa state being safe is that there
B 1 5 ble is at least one way for all
c o 4 Units= users to finish. In other
D 4 7 2 analogy, the state of figure
3.7(b) is safe because with 2

Fig. 3.7(b)

units left, the banker can

delay any request except C's, thus letting C finish and release
all four resources. With four units in hand, the banker can let
either D or B have the necessary units and so on.

Unsafe State Consider what would happen if a request from
B for one more unit were granted in above figure 3.7(b). We
would have following situation

CustomersUsedMax
A 1 6
B 2 5 Available
C 2 4 Units=1
D 4 7
Fig. 3.7(c)

This is an unsafe state.

If all the customers namely A, B, C, and D asked for their
maximum loans, then banker could not satisfy any of them and
we would have a deadlock.

It is important to note that an unsafe state does not imply
the existence or even the eventual existence a deadlock. What
an unsafe state does imply is simply that some unfortunate

sequence of events might lead to a deadlock.

89

The Banker's algorithm is thus to consider each request

as it occurs, and see if granting it leads to a safe state. If it
does, the request is granted, otherwise, it postponed until later.

LEARNING ACTIVITIES

Fill in the Blanks:

1.

3.

The collection of services provided by the operating system
is collectcuune.

AN ciiidan is a program that acts as an interface between a
user of a computer and the computer hardware.

T casisscmmnetiin is located on chips inside the system unit.

LET US SUM UP

At the end of this unit you have understood the Operating

System. Operating Systems can viewed from two view points:

resource managers and extended machines. Operating Systems
have a long history, starting from the days when they replaced the

operator, to modermn multiprogramming systems.

ANSWER TO LEARNING ACTIVITIES

Fill in the Blanks:

1. Standard utilities.
2. operating system
3. central processing unit (CPU)

MODEL QUESTION

90

1. What are the two main functions of an Operating System?

2. What is multiprogramming?

UNIT - 4

FILE ORGANIZATION

Structure
Overview
Learning Objectives
4.1 File Organization

4.1.1 File Concept

4.1.2 File Operations

4.1.3 Access Methods

4.1.4 Directory Systems

4.1.5 Directory Structure Organization

4.1.6 File Protection
4.2 /0 Device Management

4.2.1 Device Controllers

4.2.2 Direct Memory Access (DMA)

4.2.3 Principles of I/ O software
4.3 Memory Management

4.3.1 Partitions

4.3.2 Swapping

4.3.3 Paging
Let us sum up
Answer to Learning Activities
References

OVERVIEW
For most users, the file system is the most visible aspect

of an operating system. Files store data and programs. The
operating system implements the abstract concept of a file by

91

managing mass storage devices, such as tapes and disks. Also
files are normally organized into directories to ease their use,
so we look at a variety of directory structures. Finally, when
multiple users have access to files, it may be desirable to
control by whom and in what ways files may be accessed. This

control is known as file protection.

LEARNING OBJECTIVES

After completing this unit, you should be able to:

% Understand the File Concept, File Operations & Access
Methods

% Understand the 1/0 Device Management

% Familiar with Memory Management

% Know the Swapping & Paging

4.1 FILE ORGANIZATION

File management is one of the most visible services of

an operating system. Computers can store information- in
several different physical forms; magnetic tape, disk, and are
the most common forms. Each of these devices has its own
characteristics and physical organization.

4.1.1 File Concept

For convenient use of the computer system, the
operating system provides a uniform logical view of information
storage. The operating system abstracts from the physical
properties of its storage devices to define a logical storage unit,
the file. Files are mapped by thg operating system onto

physical devices.

Consequently, a file is a collection of related information

defined by its creator. Commonly, files represent programs

92

(both source and object forms) and data. Data files may be
numeric, alphabetic or alphanumeric. Files may be free form,
such as text files, or may be rigidly formatted. In general, a file
is a sequence of bits, bytes, lines or records whose meaning is
defined by its creator and user. It is a very general concept.

A file is named and is referred to by its name. It has certain
other properties such as its type, the time of its creation, the name

(or account number) of its creator, its length, and so on.

The information in a file is defined by its creator. Many
different types of information may be stored in a file: source
programs, object programs, numeric data, text, payroll records,
and so on. A file has a certain defined strueture according to its
use. A text file is a sequence of characters organized into lines
(and possibly pages); a source file is a sequence of subroutines
and functions, each of which is further organized as
declarations followed by executable statement; an object file is

a sequence of words organized into loader record blocks.

One major consideration is how much of this structure
should be known and supported by the operating system. If an
operating system knows the structure of a file, it can then
operate on the file in reasonable ways. For example, a common
mistake occurs when a use tries to print the binary object form
of a program. This attempt normally produces garbage, but can
be prevented if the operating system has been told that the file

is a binary object program.

Often when the user attempts to execute an object
program whose source file has been modified (edited) since the
object file was produced; the source file will be recompiled
automatically. This function ensures that the user always runs

93

an up-to-date object file. Otherwise, the user could waste a
significant amount of time executing the old object file. Notice
that in order for this function to be possible, the operating
system must be able to identify the source file from the object
file, check the time that each file was last modified or created,
and determine the language of the source program (in order to
use the correct compiler).

There are disadvantages to having the operating system
know the structure of a file. One problem is the resulting size of
the operating systemﬁ If the operating system defined fourteen
different file structures, it must then contain the code to support
these file structures correctly. In addition, every file must be
definable as one of the file types sunﬁorted by the operating
system. Severe problems may result ffom new applications that
require information structured in ways not supported by the
operating system.

For example, assume thqt/.a system supports two types
of files: text files (composed of ASCII characters separated by a
carriage return and line feed) and executable binary files. Now
if we (as a user) want to define an encrypted file to protect our
files from being read by unauthorized people, we may find
neither file type to be appropriate. The encrypted file is not
ASCII text lines but (apparently). random bits. Built though it
may appear to be a binary file, it is not executable. As a result
we may have misuse the operating system’'s file types
mechanism, or modify or to impose (and support) no file type in
the operating system. This approach has been adopted in Unix,
among others. Unix considers each file to be a sequence of 8-
bit bytes; no interpretation of these bits is made by the

94

operating system. This scheme provides maximum flexibility,
but minimal support. Each application program must include its
own code to interpret an input file into the appropriate structure.

Files are usually kept on disks. Disk systems typically
have a well defined block size determined by the size of a
sector. All disk /O is in units of one block (physical record), and
all blocks are the same size. It is unlikely that the physical
record size will exactly match the length of the desired logical
record. Logical records may even vary in length Packing a
number of logical records into physical blocks is a common

solution to this problem.

The operating system often defined all files to be simply
a stream of bytes. Each byte is individually addressable by its
offset from the beginning (or end) of the file. In this case, the
logical record is one byte. The file system automatically packs
and unpacks bytes into physical disk blocks as necessary.
Knowledge of the logical record size, physical block size and
packing technique determine how many logical records are
packed into each physical block. The packing can be done
either by the user's application program or by the operating
system. In either case, the file may be considered to be a
sequence of blocks. All of the basic I/O function operates in
terms of blocks. The conversion from logical records to physical

block is a relatively simple software problem.

Notice that allocating disk space in blocks means that, in
general, some portion of the last block of each file may be
wasted. If each block is 512 bytes, then a file of 1949 bytes
would be allocated 4 blocks (2048 bytes); the last 99 bytes
would be wasted. The wasted bytes allocated to keep

95

everything in units of blocks (instead of bytes) are internal
fragmentation. All file systems suffer from internal

fragmentation. In general, large block sizes cause more internal
fragmentation.

4.1.2 File Operations

A file is an abstract data type. To define a file properly,
we need to consider the operations which can be performed on
files. System calls are provided to create, write, read, rewind,
and delete files. To understand how file systems are supported,
let us look at the\se five file operations in more detail.

For convenience, assume the file system is disk-based.
Let us consider what the operating system must do for each of
the five basic file operations. It should then be easy to see how
similar operations, such as renaming a file, would be
implemented.

e Creating a file: Two steps are necessary to create a file.
First, space in the file system must be found for the file.
Second, an entry for the new file must be made in the
directory. The directory entry records the name of the file
and its location in the file system.

e Writing a file: To write a file, a system call is made
specifying both the name of the file and the information to
be written to the file. Given the name of the file, the system
searches the directory to find the location of the file. The
directory entry will need to store a pointer to the current end
of the file. Using this pointer, the address of the next block
can be computed and the information can be written. The

96

write pointer must be updated. In this way successive writes
can be used to write a sequence of block to the file.

e Reading a File: To read from file, a system call specifies
the name of the file and where (in memory) the next block of
the file should be put. Again, the directory is searched for
the associated directory entry. And again, the directory will
need a pointer to the next block to be read. Once that block
is read, the pointer is updated.

In general, a file is either being read or written, thus
although it would be possible to have two pointers, a read
pointer and a write pointer, most systems have only one, a
current file position. Both the read and write operations use this
same pointer, saving space in the directory entry, and reducing

the system complexity.

¢ Rewind a file: Rewinding a file need not involve any actual
I/O rather the directory is searched for the appropriate entry,
and the current file position is simply reset to the beginning
of the file.

o Delete a file: To delete a file, we search the directory for
the named file. Having found the associated directory entry,
we release all file space (so it can be reused by other files)

and invalidate the directory entry.

It is known that all of the operations mentioned involve
searching the directory for the entry associated with the named
file. The directory entry contains all of the important information
needed to operate on the file. To avoid this constant searching,
many systems will open a file when it first becomes actively
used. The operating system keeps a small table containing

i

information about all open files. When a file operation is
requested, only this small table is seated, not the entire
directory. When the file is no longer actively used, it is closed

and removed from the table of open files.

Some systems implicitly open a file when the first
reference is made to it. The file is autematically closed when
the job or program that opened the file terminates. Most
systems, however, require that a file be opened explicitly by the
programmer with a system call (open) before it can be used.
The open operation takes a file name and searches the
directory, copying the directory entry into the table of open files.
The (open) system call will typically return a pointer to the entry
in the table of open files. This pointeri, not the actual file name,

is used in all I/O operations, avoiding any further searching.

The five operations described above are certainly the
minimal required file operations. More commonly, we will also
want to edit the file and modify its contents. A common
modification is appending new information to the end of an
existing file. We may want to create a copy of a file, or copy it to
an /O device, such as a printer or a display. Since files are

named objects, we may want to rename an existing file.
4.1.3 Access Methods

, Files store information. This information must be
accessed and read into computer memory before it is used.
There are several ways the information in the file can be
accessed. Some systems provide only one access method for
files, and so the concepts are less important. On other systems,
such as those of IBM, many different access methods are

98

supported, and choosing the right one for a particular

application is a major design problem.
Sequential Access

Information in the file is processed in order, one record
after the other. This is by far the most common mode of access
of files. For example, editors programs usually access files in

this fashion.

The read operation on a file automatically advances the
file pointer. Similarly a write appends the new information to the
end of the file, and advances the file pointer to the new end.
Such a file can be rewound, and on some systems, a program
may be able to skip forwarded or back n record, for some
integ‘;er n (perhaps only for n = 1). This scheme is known as
sequential access to a file. Sequential access is based upon a

tape model of a file.
Direct Access

An alternative access method is direct access, which is
based upon a disk model of a file. For direct access, the file is
viewed as a numbered sequence of blocks or records. A direct
access file allows arbitrary blocks to be read of written. Thus
we may read block 14, then red block 53, and then write block
7. There are no retractions on the order of reading or writing for

a direct access file.

Direct access files are of great use for immediate access to
large amounts of information. They are often used in accessing
large data bases. When a query concerning a particular subject
arrives, we compute which block contains the answer and then

read that block directly to provide the desired information. .

99

The file operations must be modified to include the block
number as a parameter. Thus we have to read block n, where n
is the block number, rather than read the next, and write block
n rather than write the next. An alternative approach is to retain
read next and write next, as with sequential access, and to add
an operation, position file to n, where n is the block number.
Then to perform a read block n, we would position to block n
and then read next.

The block number provided by the user to the operating
system is normally a relative block number. A relative block
number is an index relative to the beginning of the file. Thus the
first relative block of the file is 0, the next...is 1, and so on, even
through the actual absolute disk address of the block may be
14703 for the first block, and 14704 for the second. The use of
relative block numbers allows the operating system to decide
where the file should be placed, and prevents the user from
accessing portions of the file system which may not be part of
his file. Some systems start their relative block number at 0; -
others start at 1.

Not all operating systems support both sequential and
direct access for files. Some systems allow only that a file is
defined as sequential or direct when it is created; such a file can

only be accessed in a manner consistent with its declaration.
Other Access Methods

Other access method can be built on top of a direct
access method. These additional methods generally involve the
construction of an index for the file. The index, like an index in
the back of a book, contains pointers to the various blocks. To

find an entry in the file the index is consulted first.

100

With large files the index file itself may become too large to
be kept in memory. One solution is then to create an index for the
index file. The primary index file would contain pointers to
secondary index files which then point to the actual data items.

4.1.4 Directory Systems

The prior discussion allows us to create files, read, write
and reposition them, and, finally, to delete them. The files are
represented by entries in a device directory or volume table of
contents. The device directory records information, such as

name, location, size, and type, for all files on that device.

A device directory may be sufficient for a single-user
system with limited storage space. As the amount of storage
and the number of users increase, however, it becomes
increasingly difficult for the users to organize and keep track of
all of the files on the file system. A directory structure provides
a mechanism for organizing the many files in the file system. It
may span device boundaries and include several different disk
units. In this way, the user need be concerned only with the
logical directory and file structure, and can completely ignore

the problems of physically allocating space for files.

In fact, many systems actually have two separate
directory structures: the device directory and the file directories.
The device directory is stored on each physical device and
describes all files on that device. The device directory entry
mainly concentrates on describing the physical properties of the
files: where it is, how long it is, how it is allocated, and so on.
The file directories are a logical organization of the files on all
devices. The file directory entry concentrates on logical

properties of each name: file, file type, owing user, accounting

101

information, protection access code, and so on. A file directory
entry may simply point to the device directory entry to provide
physical properties or may duplicate this information. Our main
interest now is with the file directory structure; device
directories should be well understood.

The particular information kept for each file in the

directory varies from operating system to operating system.
The following is a list of some of the information which may be
kept in a directory entry. Not all systems keep all this
information, of course.

102

File name: The symbolic file name.

File type: For those systems that support different
types.

Location: A pointer to the device and location on that
device of the file.

Size: The current size of the file (in bytes, words of

blocks) and the maximum allowed size.

Current Position: A pointer to the current read or

writes position in the file.

Protection: Access control information the number of
process that are currently using (have opened) this
file.

Time, date and process identification: This
information may be kept for (a) creation, (b) last
modification, and (c) last use. These can be useful
for protection and usage monitoring.

It may take from 16 to over 100 bytes to record this
information for the each file. In a system with a large number of
files, the size of the directory itself may be hundreds of
thousands of bytes. Thus the device directory may need to be
stored on the device and brought into memory piecemeal, as
needed. More specifically, when a file .is open, the directory
information about this file is brought into main memory. This

information remains there until the file is closed.

If we think of the directory as a symbol table that
translates file names into their directory entries, it becomes
apparent that the directory itself can be organized in many
ways. We want to be able to insert entries, delete entries,
search for a named entry and list all the entries in the directory.

Next we consider what data structure is used for the directory.

A linear list of directory entries requires a linear search
to fihd a particular entry. This is simple to program but time
consuming in execution. To create a new file, we must first
search the directory to be sure that no existing file has the
same name. Then we can add a new entry at the end of the
directory. To delete a file, we search the directory for the
named file, then release the space allocated to it. To reuse the
directory entry, we can do one of several things. We can mark it
unused (a special name such as an all-blank name, or a
used/unused bit in each entry), or attach it to a list of free
directory entries. A third alternative is to copy} the last entry in
the directory in the freed location and decrease the length of
the directory. A link list can also be used to decrease the time

to delete a file.

103

The real disadvantage of a linear list of directory entries is
the linear search to find a file. A sorted list allows a binary search,
and decreases the average search time. However, the search
algorithm is more complex to program. In addition, the list must be
kept sorted. This requirement may complicate creating and
deleting files, since we may have to move substantial amounts of
directory information to maintain a sorted directory. (Notice,
however, that if we want to be able to produce a list of all files in a
directory sorted by file name, we do not have to sort before
listing). A linked binary tree might help here.

4.1.5 Directory Structure Organization

Many different file directory structures have been
proposed, and are in use. The directory is essentially a symbol
table. The operating system takes the symbolic file name and
finds the named file. We examine some directory structures
here. When considering a particular directory structure, we.
need to keep in mind the operations which are to be performed
on a directory.

e Search: We need to be able to search a directory
structure to find the entry for a particular file. Since
files have symbolic names, and similar names may
indicate a relationship between the files, we may
want to be able to find all files that match a particular
pattern.

e Create File: New files need to be created and added
- to the directory.

e Delete File: When a file is no longer needed, we want

to remove it from the directory.

104

o List Directory: We need to be able to list the files.in a
directory and the contents of the directory entry for
each file in the list.

e Backup: For reliability, it is generally a good idea to
save the contents and, structure of the file system at
regular intervals. This often consists of copying all
files to magnetic tape. This provides a backup copy
in use. In this case, the file can be copied to tape and
the disk space of that file released for reuse by

another file.
4.1.6 File protection

When information is kept in a computer system, a major
concern is its protection from both physical damage and improper
access. Protection can be provided in many ways. In a multi-user
system, appropriate mechanisms are needed. The need for
protection files is a direct result of the ability to access file.

Protection mechanisms provide controlled access by
limiting the types of file access which can be made. Several

different types of operations may be controlled:

1. Read: Read from the file.

2. Write: Write or rewrite the file.

3. Execute: Load the file into memory and execute it.
4. Append: Write new information at the end of the file.

5. Delete: Delete the file and free its space for possible reuse.

105

Introduction to input/output

One of the main functions of operating systems is to
control all the computer’s input/output (I/0) devices. It must issue
commands to the devices, catch interrupts (1/0), and handle
errors. It should also provide an interface between the devices
and the rest of the system that is simple and easy to use. In this
section we will look briefly at some of the principles of I/O
hardware, and then we will look at 1/O software in general.
Principles of I/O hardware

Different people look at /0O hardware in different ways.
Electrical engineers look at it in term of chips, wires, power
supplies, motors and all the other physical components fhat pake
up the hardware. Programmers look at the interface presented to
the software the commands the hardware accepts, the functions it
carries out, and the errors that can b& reported back. In the next
two parts we will provide a little .general background on 1/O

hardware as it relates to prograﬁ1ming.

4.2 /0 DEVICE MANAGEMENT

I/O devices can be roughly divided into two categories:

Block devices and character devices. A block device is one that
stores information in fixes-size blocks, each one with its own
address. Common block sizes range from 128 bytes to 1024
bytes. The essential property of a block device is that it is
possible to read or write each block independently of all the
other ones. In other words, at any instant, the program can
read or write any of the blocks. Disks are Block devices.

If you look closely, the boundary between device that are
block addressable and those that are not is not well defined.
Everyone agrees that a disk is a block addressable device

106

because no matter where the arm currently is, it is always
possible to seek t another cylinder and then wait for the
required block to rotate under the head. Now consider a
magnetic tape containing blocks of 1K bytes. If the tape drive is
given a command to read block N, it can always rewind the
tape and go forward until it comes to block N. This operation is
analogous to a disk doing a seek, except that it take much
longer. Also, it may or may not be possible to rewrite one block
in the middle of a tape. Even if in were possible to use
magnetic tapes as block devices, that is stretching the point
somewhat: they are normally not used that way.

The other type of 1/0O device is the character device. A
character device delivers or accepts a stream of character,
without regard to any block structure. It is not addressable and
does not have any seek operation. Terminals, line printers,
paper tapes, punched cards, network interface, mice (for
pointing), and most other devices that are not disk like can be
seen as character devices.

This classification scheme is not perfect. Some devices
just do not fit in. However, the model of block and character
devices is general enough that it can be used as a basis for
making the 1/0 system device independent.

4.2.1 Device Controllers

I/0 units typically consist of a mechanical component
and an electronic component. It is often possible to separate
the two portions to provide a more modular and general design.
The electronic component is called the device controller or
adapter. On mini and microcomputer, it often takes the form of
a printed circuit card that can be inserted into the parent bard.

The mechanical component is the device itself.

107

The controller card usually has a connector on it, into
which a cable leading to the device itself can be plugged. Many
controller can handle two, four, or even eight identical device. If
the interface between the controller and device is a standard
interface, either an official standard such as ANSI, IEEE or ISO,
or de facto one, then companies can make controllers or
devices that fit that interface. Many companies, for example,
make disk drives that match the IBM disk controllers interface.

We mention this distinction between controller and
device because the operating systems nearly always deal with
the controller, not the device. Nearly all microcomputer and
minicomputers use the single bus model of Fig.4.1 for
communication between the CPU and the controllers. Large
mainframes often use a different model, with multiple buses
and specialized 1/0 computers called 1/0 channels taking some
of the load off the main CPU.

Disk Prin
drives ter
Controller
device \Q 9 l?
interface
CPU Memory Disk Printer Other
controller controller controller

System
Bus

Fig. 41 A model for connecting the CPU, memory,

controller, and |/O device.

108

The operating system performs 1/O by writing commands
into the controllers’ registers. The IBM PC floppy disk controller,
for example, éccepts 15 different commands, such as READ,
WRITE, SEEK, FORMAT, and RECALIBRATE. many of the
commands have parameters, which are also loaded into the
controller's registers. When a command has been accepted,
the CPU can leave the controlled alone, and go off to do other
work. When the command has been completed, the controller
causes an interrupt in order to allow the operating system to
again control of the CPU, and test the results of the operation.
The CPU gets the results and the device status by reading one
or more bytes of information form the controller’s registers.

4.2.2 Direct Memory Access (DMA)

Many controllers, especially those for block devices,
support direct memory access (DMA). To explain how DMA
works, let us first look at how disk reads occur when DMA is not
used. First the controller reads the block (one or more sectors)
form the drive serially, bit by bit, until the entire block is in the
controller’s internal buffer. Next, it performs the checksum
computation to verify that no read errors have occurred. (The
checksum can be computed only after the entire block has
been read). Then the controlled causes an interrupt. When the
operating system starts processing the interrupt, it can read the
disk block from the controller’s buffer a byte or a word at a time
by executing a loop, with each iteration reading one byte or

word from a controller device register and storing it in memory.

Naturally, a programmed CPU loop to ear the bytes one
at a time form the controller wastes CPU time. DMA was
invented to free the CPU from this low-level work. When it is

109

used, the CPU gives the controller two items of information, in
addition to the disk address of the block: the memory address

where the block is to go, and the number of bytes to transfer,
as shown in Fig. 4.2

Device
CPU Memory Disk
Controller
D Buffer
DMA registers
Count e
I
Memory address
Count
System Bus

Fig. 4.2 A DMA transfer is done entirely by the controller

After the controller has read the entire block from the device
into its buffer and verified the checksum, it copies the first byte
or word into the main memory at the address specified by the
DMA memory address. Then it increment the DMA address and
decrement the DMA count by the number of bytes just
transferred. This process is repeated until the DMA count
becomes zero, at which time the controller causes an interrupt.
When the operating system starts up, it does not have to copy
the block to memory: it is already there.

110

4.2.3 Principles of I/ O software

Let's turn away from the hardware and now look at how
the 1/0O software is structured. The general goals of the I/O
software are easy to state. the basic idea is to organize the
software as a series of layers, with the lower ones concerned
with hiding the peculiarities of the hardware from the upper
ones, and the upper ones concerned with presenting a nice,
clean, regular interface to the users. In the following we will

look at these goals.

A key concept in the design of I/O software is device
independence. It should be possible to write programs that can
be used with files on a floppy disk or a hard disk, without having
to modify the programs for each device type. In fact, it should
be possible to move the program without recompiling it.

Closely related to device independence is the goal of
uniform naming. The name of a file or a device should simply
be a string or a integer and not depend on the device in any
way. In some operating systems, floppy disks, hard disks and
all other block devices can be mounted in the file system
hierarchy in arbitrary places, so the user need not be aware of
which name corresponds to which device. All files and devices

are addressed the same way: by a path name.

Another important issue for I/O software is error handling.
In general, errors should be handled as close to the hardware as
possible. If the controller discovers a read error, it should try to
correct the error itself if it can. If it can not, then the device driver
should handle it, perhaps by just trying to read the block again.
Many errors are transient, such as read errors caused by specks
of dust on the read head, and will go away if the operation is

111

repeated. Only if the lower layers are not able to deal with the
problem should the upper layers be told about it.

Still another key issue is synchronbus (blocking) versus
asynchronous (interrupt-driven) transfers. Most physical 1/0O is
asynchronous the CPU starts the transfer and goes off to do
something else until the interrupt arrives. User programs are
much easier to write if the 1/O operations are blocking after a
READ command the program is automatically suspended until
the data are avail-able in the buffer. It is up to the operating
system to make operations that are actually interrupt-driven
look blocking to the user brograms.

The final concept that we will deal with here is sharable
versus dedicated devices. Some /O devices, such as disks,
can be used by many users at the same time. No problems are
caused by multiple users having open files on the same disk at
the same time. Other devices, such as printers, have to be
dedicated to a single user until that user is finished. Having five
users printing lines intermixed at random on the printer just
would' not work. Introducing dedicated devices also introduces
a variety of problems, including deadlock. Again, the operating
system must handle both shared and dedicated devices in a
way that avoids problems.

These goals can be achieved in a comprehensible and
efficient way by structuring the /O software in four layers:
1. Interrupt handlers.
2. Device drivers.
3. Device- independent operating system software.
4. User level software.

112

decremented by 1 with every input count pulse. The count of a
4-bit down counter starts from binary 15 and continues to binary
counts 14, 13, 12...0 and then back to 15. Thé circuit of figure
1.32 will function as a binary down counter if the outputs are
taken from the complement terminals Q' of all flip-flops. A list of
the count sequence of a count ddwn' binary counter.shows that
the lowest-order bit must be complemented with every count
pulse. Any other bit in the sequence is complemented if its
previous lower order bit goes from 0 to 1.

Synchronous Counters _

Synchronous counters are distinguishéd from ripple
counters in that c.lock pulses are applied to the CP inputs of all
flip-flops. The common pulse triggers all the flip-flops
simultaneously, rather than one at a time in succession as in a
ripple counter. The decision whether a flip-flop is to be
complemented or not is determined from the values of the J and
K inputs at the time of the pulse. If J = K = 0, the flip-flop
remains unchanged. If J = K = 1, the flip-flop complements.
Binary Counter :

The design of synchronous binéry counters is so simple.
Ina synchronous binary counter, the flip-flop in the lowest order
position is complemented with eVery putse. A flip-flop in any
other position is complemented'with a pulsg provided éll the bits
in the lower order positions are equal to 1,}because the lower
order bits will change to 0's on the next count pulse.
Synchronous binary counters have a vregula’r.patter_n and easily
be construéted with complementing flip-flops and gates. With a
regular pattern, the CP terminals of all flip-flops are connected to
a common clock-pulse source. The first stage A has its J and K

equal to 1 if the counter is enabled. The other J and K inputs are

113

equal to 1 if all previous low order bits are equal to 1 and the
count is enabled. The chain of AND gates generates the
required logic for the J and K inputs in each stage. The counter
can be extended to any number of stages, with each stage
having an additional flip-flop outputs are 1's.
Binary Up-Down counter

In a synchronous count-down binary counter, the lip-
flop in the lowest order position is complemented with every
pulse. A flip-flop in any other pbsition is complemented with
a pulse provided all the lower order bits are equal to 0. For
example, if the present states of a 4-bit count down binary
counter is A4A3A2A1 = 1100, the next count will be 1011. A4
is always complemented. A, is complemented because the
present state of Ay = 0. A; is complemented because the
present state of A,A; = 00. But A; is not complemented
because the preéent state of AzAA¢ = 100, which is not an
all 0’s condition. The two operations can be combined in
one circuit. A binary counter capable of counting either up
or down also exists. The T flip-flops employed in this circuit
may be considered as JK flip-flops with the J and K
terminals tied together. When the up input control | 1, the
circuit counts up, since the T inputs are determined from
the previous values of the normal outputs in Q. When the
down input control is 1, the circuit counts down, since the
complement outputs Q' determine the states of the T inputs.
When both the up and down signals are 0's the register
does not change state but remains‘ in the same count.

114

Count
enable

cP

A,
Q
J

A 3
Q
J

o
s

O next
stage

Fig1.33 4-bit synchronous binary counter

115

C
Up
Down

()

A,
Q
A
[
k__:l
Vam
N i

A

Ay
Q
1
\.._.:I
T
Figure 7-18 4-bit up-down binary counter

Ag

g

A

[
.
Wil
N

To next
siage

Fig1.34 4-bit up-down binary counter

3.8 Interconnection Structures
CENTRAL PROCESSOR

The block diagram of a typical processor is shown in the
following figure 1.35;

Register | ALU

Control Unit

CPU
Fig 1.35 block diagram of a processor

116

Here ALU called the arithmetic and logic unit performs all
the processing operation like arithmetic and logic aperations.
The control unit is responsible for generating the control signals
for the performance of operations of ALU and other input output
devices, and for synchronization. The registers are the memory
part of the CPU, which hold the data for the processing. Some
registers are used for general operations and are called general-
purpose registers. A collection of registers is called memory unit.
REGISTERS: '

The CPU of a computer includes a set of high-speed registers.
These registers may-be classified as.general purpose registers.

The general-purpose register, as the name implies is
usually used for general purpose opera\'tions. These registers
may hold data, temporary results or memory address when a
computation is in progress. These versa or register to register,
using a program. A program is a asset of instructions written in a
machine understandable language and are stored in a collection
of general purpose registers called memory. The processor
reads the instructions and data, transfers them to other
registers, store the temporary results and permanent results
after the processing in these registers. During complex
arithmetic operations like multiplication, division, etc., It is
necessary to store intermediate results temporally. For this
purpose there are usually in or more scratchpad registers or a
scratch pad memory. These are purely internal; hardware
resources and selective registers are addressable by program.

Apart from these general-purpose registers, there are
some registers called special purpose registers. These performs
only the special tasks assigned to them and are incapable of

dong any other operation.

L7

Some of the special purpose registers and their purpose
mentioned below.

Register Name Purpose

Program Counter (PC) Holds address of the next

instruction to be executed.

Instruction Register (IR) Holds the instruction currently
being executed

Effective Address Register | Holds the address of the data
(EAR) to be retrieved from the
memory

These are also called dedicated registers because they
are available for the exclusive use of the control unit and cannot
be accessed by a user program.

MEMORY UNIT :

The major and probably the most important advantage of
digital systems, over their analog counterpart is that large:
quantities of data and information can be stored for short or
large periods. This improves the versatility and adaptability of
the digital systems.

The basic memory device of digital system is flip flops.
Already the shift registers are the high speed memory elements
and used extensively in the internal operations of a digital
computer have been discussed. Let us have a detailed
discussion on some more memory devices.

MEMORY TERMINOLOGY

Before knowing the different types of memories, it is
essential to be familiar with the different terms associated with
memories.

Memory Cell: A device or a circuit, which can store a single bit a

FF or magnetic spot.

118

Memory Word: A group of bits, typically 8, 16, or 32 bits
depending on the capacity of the memory registers.

Byte: A group of 8 bits.

Capacity: Number of bits that can be stored in the memory. This
is represented as multiple of 2. Usually a memory capacity is
represented as the number of bytes. Typically a 1K X 8 memory
contains 1024 words of 8 bits or 1024 X 8 = 8,192 bits.

Density: Another term for capacity. Dense memories can store
more bits in the same amount of space.

Address: An identification, which shows the location of a word in
memory. Each byte or word stored will have a unique address
used to refer to it.

Access Time: The time taken to read the data from memory. This
is the time difference between the address being given to the
memory and the data being available at the output of memory.
Access Time: Speak Time + Transfer Time

Seek Time: Time required to position the read - write head to a
location. This is a unique factor of electromechanical memory devices.
Transfer Time: Time required to transfer trre data to or from the
devices. Transfer rate is the number of characters or words that
the device can transfer per second, after it has been positioned
at the beginning of the record.

GENERAL MEMORY OPERATION:

Though the internal opera'tié‘n of the memory differs for
the different types, the basic operating principles are the same
for all memories. The input and output lines and the control lines
are the same. Though the name may differ, they perform the

same operation.

119

The operation performed on a memory can be listed as

follows:

1. Selection of address being accessed.

2. Loading the data into the memory through a buffer register,
for write operation.

3. Holding the output data in the buffer register from memory, for
read operation.

4. Selection of the memory chip by enabling the enable input.

5. Selection of any one of the read o write aperations.

The general block diagram of memory with the above
control and data inputs and data-outputs is given in the following
figure 1.36.

Data Inputs

RN

lo . . ; : : A I7

;=

Az
cHElRIRES 16 x 8 memory
inputs ~ — | A
Enable S E
ReadWrite ___, | R/ W
On O-
Data Outputs

Fig1.36: (a) Block diagram of a 16 x 8 memory

120

00 0 0 [T 0 0 1 1 0 1 0
o 0 0 1 T 1 1 1 = 8" -
0 0 10 0 0 1 1 D -0 1 1
B 11 0 0 1 0 1
0 1 00 ‘g1 0 1 0 1

B A T 0 1 10
U e e e re B

Fig1.36 (b) Virtual arrangement of memory registers.

The explanation for the different input, output lines and
the control can be made simultaneously by explaining the
operation of the memory.

The memory chip is selected by a “1” to enable. The
memory capacity is 16 X 8 bits. Since the total number of
memory locations are 16, the address bits needed are 2" = 16

i.e., n = 4. So the address commences from 0000 and extends

up to 1111. Just like a PLA, decoding them enables the address
__-~"lines and the read/write line gives the necessary enable signal.
Since there is a bar over write, the same line is enabled for if the

signal given is “high” and for write if the signal given is “low".

121

The data inputs are given, if the operation selected is write and
data outputs can be taken, if the operation selected is read.

Address Data Inputs Data Outputs
E | As RIW |b........... O7...... 107 oy
1 1A & ity
110108 |1 X: X X X x[0101 0
X X X 1 10
1101010
g i il 0 | 0|x x x x X X
0(1111|x 1040 X X
X X X X X[X X XX X X
X X X X X

Table: Status of memory inputs and outputs.
An overview of the memory operation and the status of

the different inputs and outputs are given in the above table.
This shows that as long as no enable signal is given no input or

output lines are activated.
This is a rectangular configuration. There are three

different configurations possible as shown in the figure.

1——-—-1

r 3—
TR ——
16

122

Column 1

Columns

po— 1x16

(a

Columns 1 2

} ‘ Columns

1 —
2~ (T - 16
r 33—
.| exe R
W 07 2x8
s 16 w
- s
(b)
Columns
1 2
|1 1]
F 1
o 2—— 4x4
W 33—
s 4
(C)

Fig1.37 Block diagram of a Central Processing Unit

Here the capacity of all memories shown is the same-";_
though the number of rows and columns differ. Out of the three
configurations (a) require 16 + 1 address lines, 16 for the rows--
and 1 for the columns, (b) requires 8 + 2 address lines ‘and (c) '
require 4 + 4 address lines. The configuration in (c) requires the
lowest number of address line. It is for this reason, that the
square configuration is so widely used in industry. This
arrangement of n rows and n columns is often referred to as
matrix addressing. The arrangement in figure where a selection

of a cell means selection of row is called linear addressing.

123

if the memory is constructed with bipolar transistors, then
it is called a bipolar memory. By contrast, a memory can be a
unipolar memory if it is constructed with MOS technology.

BUS TRANSFER:

In a system with many registers, usually parallel transfer
is preferred only if the speed is imperative. The main
disadvantage of parallel transfer is that the number of
interconnections required for this type of transfer is more éince
the data bits are transferred simultaneously
Fig 1.38

R R, Rs

(a) Parallel Transfer

7 S v 4 / Sz
S3

R4 R, Ra

o [T [

(b). Transfer through a common line

124

Also as the number of registers become more and more,
the interconnections also increase. Figure1.38 shows the
connections between 3 registers. For this 6 set of lines are
required for interconnections.

Instead if common lines can be used for transfer among
registers and the registers can be chosen using switches, this
provides a compromise between the amount of hardware
required and the speed. This is called bus transfer.

A group of wires through which binary information is
transferred among registers is called a bus. For a parallel
transfer, the number of wires in the bus is equal to the number
of flip-flops in the register. But here the numbers of lines are
reduced using multiplexers.

The following figure(a) shows a bus system with 4
registers. There are 4 multiplexers whose outputs are connected
together to form the data output. Each one of the multiplexers
has at least one input from each of the 4 registers. The

multiplexer input can be selected using X, Y selection lines.

Register A Register B Register C Register D
A1 | A2 | A3 | A4 B1 | B2 B3| B4 C1|c2|c3|C4 p1 | D2|D3 | D4
B1 Cc1 D1 B2 C2 D2 B3 C3 D3 B4 C4 D4
v l l l v l ¢ l v l l l J' ‘ l
10 10 10 10
4X1 4X1 4X1 ax1
| Mux - MUX MuX MUX

select

o

Fig1.39 (a): Transfer of data from register to bus

125

4 line bus ' 4 line bus 4 fine bus 4 line bus

IR S N N S O A0 N R AR O

Register R Register S Register T Register U

D0 D1 D2 D3

Z—»
Select e e E
e Decoder (enable)

Fig1.39 (b): Transfer of data from bus to register

When X, Y lines are 0,0 the first inputs of all multiplexers
are selected. Since the first |y are connected to the outputs of
Register A, the data in register A appears at the multiplexer .
output Iinés, similarly the other register contents can be brought
to the outputs by using selection lines accordingly.

After bringing the data to the bus the data has to be
moved into the destination register. This is also a similar
'operation, where any one of the registers can be chosen using a
decoder as shown in the figure.

Usually a buffer ‘register is preferred in between the two
operations shown by figure1.39 (a) and (b). The data fro source
register is first transferred to the buffer register during one clock
pulse and this is again transferred to the destination register
during the 2™ clock pulse. A quicker way will be to use the two
edges of the clock pulses to synchronize them.

Transfer through a bus is limited to one transmission at a
time. If two transfers are required at the same time, two buses
must be used.

126

The micro operations can be given as follows;

xy' :Bus « C

ZWE : Ry« Bus

Also since buses are known to exist in the system, it may also

be given as,
xy'’ZwE: Ri«C

In a typical computer there are three types of buses —
Address Bus, Data Bus and Control Bus. The address bus is
used to access the memory or peripheral devices using the
address placed on \it. The data bus transfers the data through

and outside the system. The control bus is for carrying the

control signals for various parts of the system.
Thisis illustrated in the following figure. The connections
of a typical CPU — memory show how the different buses are

connected.
Address
Decoder
cPU
Data Bus (DB)
—
:_—_> Control Bus (CB)
CS: Chip Select

cs
—)| Memory
DB Ic
.
CB
CcS
e
Pl NemOL
Ic2
EB——)
CS
. —
DB ——) Ny
IC3
=

Fig1.40: CPU - Memory Connections through bus

127

MEMORY TRANSFER:

The operation of a CPU — memory data transfer can be
explained as two different operations — read operation and
writes operation. The transfer of a data from memory to the
external environment is called a read operation. The transfer of
a new data into the memory is called the write operation. In both
operations, the particular memory word selected must be
specified by an address.

The letter M will symbolize a memory register or word.
When a word is to be selected the selection is done, by
specifying the address through a special purpose fegister called
Memory Address Register (MAR). Similarly another register is
used for holding the data before being transferred into and out of
memory. This is called Memory Buffer Register (MBR).

The following figure shows the connection of address to a
memory unit using a specialized MAP and using a multiplexer.

Memory
MAR Address Unit

MBR

Fig1.41: (a). Using MAR

128

These approaches would argue that perhaps swapping does
too much. Both segmentation and paging move paﬁ of
programs back and forth between secondary storage and main
memory as needed. Segmentation and paging differ from one
another primarily in the way the code for a particular process is
divided. In segmentation, a program code is divided into
number OS variable sized blocks corresponding to the logical
structure of the program, such as procedures, functions and
data segments. Paging, on the other hand, divides the program
code into fixed blocks, called pages. It is evident that the more
logical subdivision of segmentation makes program linking
easier, while the fixed blocks of paging, being each
interchangeable with the other, makes memory management
easier. In either case, since portions of program’'s code are
being moved around during a program’s execution, something
like a hardware relocation register will be needed to compute
actual addresses in order to avoid unacceptable slowdown in

program execution times.

LEARNING ACTIVITIES
Fill in the Blanks:

[is one of the most visible services of an operating
system.

S —— access is based upon a tape model of a file.

. T mechanisms provides controlled access by

limiting the types of file access which can be made.
4. Linuxusesa............. paging technique to fairly choose

pages which might be removed from the system.

129

LET US SUM UP

At the end of this unit you have understood the concept

of File System. Files are managed by the Operating System.
How they are structured, named, accessed, used, protected
and implemented are major topics in Operating System Design.
As a whole, that part of the operating system dealing with files
is known as the file system.

ANSWER TO LEARNING ACTIVITIES
Fill in the Blanks:

1. File management

2. Sequential
3. Protection
4. Least Recently Used (LRU)

MODEL QUESTIONS
1. Write short notes on Swapping.

2. Write short notes on Paging.

REFERENCES
T.W. Pratt - Programming Languages, Design and

Implementation — PHI
R.G. Dromey — How to solve it by Computer — PHI
Andrew S. Tanenbaum — Operating System Design and

Implementation - PHI

130

BLOCK 2 INTRODUCTION

At the end of this block you will know the Unix Operating
System. Unix Operating System prospered at Bell Labs, finding
their way into laboratories, software development projects, word
processing centers and operations support systems in telephone
companies. Since, then, it has spread world-wide, with tens of
thousands of systems installed, from microcomputers to the largest
mainframes. Unix systems run on a range of computers from
microprocessors to the largest mainframes; this is a strong
commercial advantage. Second, the source code is available and
written in a high-level language, which makes the system easy to
adapt to particular requirements. Finally, and most important, it is a
good operating system, especially for programmers. The Unix
programming environment is unusually rich and productive. Even
though the Unix system introduces a innovative programs and
techniques, no single program or idea makes it work well.

Introduction to System Software is divided into Four Blocks.
Block 2 consists of four Units.

Unit 5 :is a discussion of the Unix Operating System, Unix File
System. The file system is central to the operation and use of the
system. The command interpreter, or shell is a fundamental tool,
not only for running programs, but also for writing them.

Unit 6: deals with a text editor VI is used to create and manage
text files and documents.

Unit 7: talks about writing new programs using the standard 1/0
library. The programs are written in C, which the reader is
assumed to know, or at least be learning concurrently.

Unit 8: is about Pipes and Filters. Programs that perform some
simple transformation on data as it flows through them.

131

UNIT -5

UNIX OPERATING SYSTEM

Structure
Overview
Learning Objectives
5.1 Introduction to Operating System
5.1.1 Different types of Operating System
5.1.2 Multi Processor Operating System
5.2 Foundations of Unix Operating System
5.2.1 Evolution of Unix
5.2.2 Versions of Unix
5.3 Structure of Unix
5.3.1 The Kernel
5.3.2 Shell
5.3.3 File system
5.4 Command Format
5.5 Communication between Users
5.6 Text Manipulation Commands
Let us sum up
Answer to Learning Activities

References

OVERVIEW

An Operating System is a program that acts as an

interface between the user and the computer. Operating
Systems have earned the reputation for being the most critical
software in a computer system. Operating system primarily

provides a convenient interface to its users and at the same

132

time manages the computer's resources processor, memory,
and |/O devices. In a nutshell operating system can be defined
as a resource manager.

LEARNING OBJECTIVES

After completing this unit, you should be able to:

% Understand the Operating System
«» Familiar with Structure of Unix
+»» Know the Command Format

+ Understand the Communication between Users

5.1 INTRODUCTION TO OPERATING SYSTEM

A general organization of an operating system is shown below:

Without an operating system, the most powerful computer
in the world would be useless. No matter how powerful and
elegant your programs are, they can't function without the

assistance of an operating system.

5.1.1 Different types of Operating System

The operating system is categorized into the following types.
Single User System

This type of operating system is popularly known as
personal computer operating system. Their job is to provide a
good interface to a single user. The two popular operating
systems under this category are DOS and Windows.

DOS is an example for a single user operating system
that is single user with no multitasking. Multitasking means
running more than one program concurrently. Windows is an

example for a single user operating system with multitasking

133

capability. There are various versions of Windows operating
systems like, Windows 95, Windows 98 and Windows XP.

These operating systems are widely used for small
applications like word processing, Internet access, managing
small databases etc.

Multi User System

Operating systems, which can serve for more than one
user at a time, are known as multi user operating systems.
Each user can run his own program. The operating system
allots a quantum of time for each user for processing his tasks.
The most popular multi user operating system is UNIX
Operating system.

5.1.2 Multi Processor Operating System

Some computer systems involve more than one CPU.
Depending on precisely how these CPU's are connected and
what is shared, these computers are called parallel computers
or multiprocessor computers. They need a special type of
operating system to manage the additional resources.

5.2 FOUNDATIONS OF UNIX OPERATING
SYSTEM

UNIX is a time-sharing operating system: a program that

controls the resources of a computer and allocates among
users in addition to controlling the peripheral devices and

managing a file system.
5.2.1 Evolution of Unix

UNIX was developed in 1969 at AT&T Bell laboratories. It
was developed by designers, who were involved in the

134

development of less popular MULTICS operating system. UNIX
is the brainchild of two persons Ken Thompson and Dennis
Ritchie. Their first venture was a modest multitasking system to
support two users. This operating system supported an efficient
file system, a command interpreter and a set of utilities.

Earlier versions of operating system did not support
machine compatibility. But UNIX changed the operating system
‘world scenario entirely by breaking through this seemingly
difficult demerit by running on different systems.

UNIX was not written in assembly language as most
operating systems were. It was written in C to aid the machine
compatibility feature by making it compatible to different
hardware platforms.

5.2.2 Versions of Unix

The AT&T Bell laboratory where the UNIX was primarily
developed was not able to commercialize its products due to a
judgement imposing a ban passed by the government. This
judgement forced the AT&T Bell laboratories to sell its product to
various academic institutions. Later business establishments
joined in the development of the UNIX operating systems. As the
result of all these efforts different versions have emerged. These

versions have been discussed briefly in the forth-coming sections.
Berkeley Unix

Of all the versions of Unix this deserves a special mention
due to its larger contribution to the - development of the
operating system. Most of the new features in the Unix
operating system were developed at the university of California,
Berkeley.

135

We could almost say they created a Unix version of their
own. This version was named as BSD UNIX where BSD is the
acronym for Berkeley software distribution. Berkeley UNIX had
a more efficient file system than the AT&T original version and
is also equipped with better linking facilities.

Other versions

AT&T Bell laboratories embarked on commercialization of
its Unix after the government’s ban on it was removed. Their
earlier versions previously know as "editions" were then
changed to "systems". The first to come in the "system" series
was the System3, which later became system V Release 3.0.
Release 3.2 followed this version. '

There are many other versions of UNIX. These include
the Microsoft and Sun Microsystéms versions. Microsoft
developed its own version of UNIX and named it 'ZENIX' which
was later sold off to Santa Cruz operation(SCO). The sun
Microsystems version of Unix is called as 'SOLARIS'

LINUX

Linux was the first non-commercial version of UNIX.
LINUX was developed. by Linus Torwalds as his final year
project while doing under graduation at Helsinki University in
Finland. The Iicensing made the source code public. Linux is
strong in networking and Internet features. Linux can run on all
PENTIUM PC's apart from Apple's Power PC and Sun's Sparc
Computers. '

136

5.3 STRUCTURE OF UNIX

The following gives the detail high-level architecture of the Unix

operating system.
5.3.1 The Kernel

The heart of a UNIX operating system is a collection of
programs termed as Kernel. The kernel controls the computer's
resources. When we log in, it is the kernel that checks if we are
an authorized user and has the correct password. The kernel
keeps track of all the various programs being run, allotting time
to each, deciding when one stops and another starts. The
kernel assigns storage for yours files. The kernel runs the shell
programs. The kernel handles the transfer of information
between the computers and terminals, type drivers and
printers. In other words, the kernel is what we call an operating
system. It's the heart of the UNIX system, which is why it is
called the kernel. The functionalities of the kernel can be

summarized as follows:
0 Memory management
0 File System management
¢ 1/O management
0 Process scheduling
0 Process dispatching
5.3.2 Shell

Another important part of the UNIX operating system is the
shell. It is an interface between the user and the kernel. It has a

program capability of its own. The main merit of the shell

137

programming is hiding the implementation of the kernel functioning
from the user thus reducing much overhead of the user.

5.3.3 File system

UNIX operating system manages its documents through a
powerful system called the File system. Unix File System is a

hierarchical or tree structured.
Different types of files

UNIX File System has the following files
1) Ordinary Files (text or binary)
2) Directory Files
3) Special Files
4) Standard Files
UNIX Operating System treats directories and devices as files.

Directories

Directories are collection of files or other directories.
Special Files

Devices like printers or terminals are treated as special files.
Standard Files

Standard Files are used to display information on the standard
input / output devices.

5.4 COMMAND FORMAT

Basic commands in Unix

UNIX is the most secured operating system. A user can
enter into UNIX operating system, if he maintains an account.
When we enter the UNIX operating system we are prompted for
login name and password. Creating a new account is possible

only by System Administrator.

138

Login Command

Login is a process by which a user identifies himself to the
system. This command requires the person to type in the usermame
of the account maintairmd for him in the operating system. After
entering the usemame the user is asked for the password.

Password is a secret code known only to the user. This

code should be type in. The typed characters are not echoed in

the monitor screen as a safety measure.

NOTE: Even the administrator does not know the password.

Example
$ LOGIN: you

password: XXXXX

You have mail

Date & Time Command

type you name then press
RETURN

password typed will not be
echoed as you type it

there is an unread mail to
be
read after you log in.

the system is ready for

accepting commands from
the

user. This is a dollar
prompt.

The date command is used for displaying both the system date

& time.

Example
$ date

139

Wed Sep 11 23:02:36 IST 1998

There are several optional formats for the date command.

a) date +%m

This command displays only the month in number
Example

$ date +%m

05
b) date +%h

This date command displays the name of the current month of
the year.

Example
$ date +%h
May

c) date"+%h%m"

This command combines the functions of the above two
commands i.e. it displays both the name and numeric
representation of the month.

Example
$ date +"%h%m"
May 05

lc"i"l other fc;rmat specifiers

d day of the month(1 to 31)
y last two digits of the year

H,Mand S hour, minute and second

140

Echo Command

The main function of this command is to display its arguments
on the screen. It is an internal command

Example

$ echo Hello World

Hello World

(Spaces are not considered here as characters but ignored)
ECHO may also be used to evaluate the value of the variable.
Example

$ x=23 #value assigned to variable 'x'

$

$ echo $x

23
Man Command
This command is used to obtain online help on any command.
Example

$ man we

The following is the help text available for wc command.
wc (C) |
wc - count words, lines, and characters or bytes

Syntax
wc [-w][-c][-m][file....]

141

Description

The wec command counts newline characters, words and
characters in the named files. It reads from the standard input if
no files are named. wc also keeps a total count for all named
files. A word is a maximal string of characters dellmlted by
white space as defined by the current locale. "

The option -l, -w, and -c or -m may be used in any
combination- to -specify that a subset of newline characters,
words, and bytes or characters (respectively) are to bg
reported. The default options are -lwm. ‘

The order and number of output columns are not affectéd
by the-order and number of bptioné. There is always at most
one column in the following order: number of newline
characters, words, bytes, and file name. The filename is. not
present if one or no filename is given on the command line. If
more than one filename'is given on the command line, the final
line contains that total number of newline characters, words,
and bytes in all files,.and is labeled with the word total in the
filename column.

Limitations

The -c option fqrmerly.stoqdvfor character count. This can
be misleading as it actually counts bytes;' this may not be the
same as the number of characters for some locales. Use the -m
option to count characters.

Standard conformance

wWC is conforman_t with:

142

ISO/IEC DIS 9945-2:1992, Information technology - portable
Operating System

Interface (POSIX) - part 2: Shell and Utilities (IEEE Std
1003.2-1992);

AT&T SVID Issue 2

X/Open CAE Specification, Commands and Utilities, Issue 4,
1992.

1_May_1995
man page for wc (SCO_UNIX)
(courtesy SCO-Open Server)

Options of man command

a) -e option
$ man -e grep
grep, egrep, fagrep (C) - search files for a pattern.

Here -e gives an one-line introduction to the command and
displays the other related commands equivalent to that of grep
command.

b) -k option

if we do not know the exact command but we know some
key words associated with the command, then we can use -k
option to find list of commands that uses the key word.

Example

$ man -k inode
clri (ADM) -clear inode

inode (FP) -format of an inode

143

ncheck (ADM) -generate names from inode numbers
For the key word inode there are three commands.
Who Command

The 'who' command is used to know the detail of all the users

working on various terminals.

Example
$ who
root °© console sep11 10:32
ray tty05 sep11 14:09
ram ttyO4 sep11 13:17

Who am i Command

This command gives the details about us (who is currently
logged on). This command is derived from who command.
Instead of printing information about all the users, it displays
the information about the particular user alone. (It is the
arguments to the command, which decides something different
from that of the regular process.)

Example

$ who amii

ray tty05 sep11 14:09
cal command

CAL is a command to view the calendar of any specific
month of the year or a complete year. Calendar can be printed
from 1 to 9999 year.

144

Example

To display the calendar for the entire year 2002 the command
should be

$ cal 2002

All the month of the year 2002 are displayed in a formatted
manner.

To print the calendar for a particular month the following format
has to be used.

$ cal month year

Example
$ cal 1 2003
S M Tu W Th Foive S

5.6 7 8 8.10..11
12¢ 18- 14 15.~16 AT .18
10 20721 22 23:.24- 25
26 27 28 29 30 A

Banner Command

This command is used for creating fancy objects or
posters on the screen. It displays the arguments we type in
large size and in multiple lines.

Example
$ banner Hello

Hello

145

tput clear Command

This command is used in UNIX to clear the screen. The first
command is

Clear
This is similar to CLS in DOS
$ tput clear
clear is given as a argument to the tput command.
Example
$ tput clear

The screen is cleared and the cursor is placed at the top left

corner.
Is (a simple file command)

When we log in to UNIX system, we are automatically
placed inside a directory called as HOME directory. This
directory is created at the time of creating an account for us on
the system. To see the content of the directory, a simple file

command Is is used.
Example
$ls
name.txt
prime.c
perfect.cpp

fact.c

146

Wildcard patterns

In general, file names differ only by a few characters in
the prefix or suffix. These files are accessed and actions can be
performed on them collectively. Special characters are used to

represent character patterns, such as '?', "™ and [..].

"' is known as the meta character it represents any number of
characters

Example

$ Is shu* (prefix usage)

Output
shunt

shum.c

shun.c
Example.2

$ Is *ing (suffix usage)
Output

reading

seeing

skewing

another meta character is -?. The ? meta character differs from
* due to the fact that it represents only one character.

Example

$ Is sha?.?

147

Output
Shal.c

Shat.c
“[1" is used to access a subset of related files
Example

bas[1-4]

This command displays the file names bas1, bas2, bas3 and
bas4 i.e., '-' gives the range of characters within the brackets

Creating a file command
To create a new file on the system cat command is used.

Syntax

$ cat > filename
Example

$ cat > names

balaji prabu

srinivasan

sundararaman

sriram

CTRL+d #CTRL and d key must be pressed
simultaneously

$

To check the availability of the above file, we can use Is

command.

148

Example
$ls
names
$
Command to display the content of the file

The same cat command which is used for creating a file is also

used to display the content of the file.

Syntax

$ cat filename
Example
$ cat names
balaji prabu
srinivasan
sundararaman
sriram
$
grep command

grep command allows the user to search for the particular

pattern in a single file or in a group of files.

Syntax
$ grep pattern files

Example

$ grep balaji names

balaji prabu

149

$

If the specified pattern does not exist in the file then grep

command displays a new prompt.
Example
$ grep shaiksulaiman names

$

5.5 COMMUNICATION BETWEEN USERS

Write Command (two way communication)

write command allows us to have two way communication
with any persons who is currently logged in. We can write a

message to a user and wait for the reply from the user.

This process can be continued until both of the user decides to

terminate it.
Syntax
$ write srinivasan

Hello srinivasan how are you, did u attend UNIX practical or

not- balajiprabu
CTRL +d
$

If the user by name srinivasan has logged on, the following

message will be displayed on his terminal.
Message from balajiprabu tty15....... along with beep sound.

If the user is not logged on, then the following message will be

displayed on our terminal.

write: srinivasan is not logged in

150

On the other side, user srinivasan can reply to the message
sent by balajiprabu, by using the same write command.

$ write balajiprabu

hi i am fine, yes i have attended the UNIX Pratical. Bye -

srinivasan
CTRL +d
$

Mail Command

'Mail' is the most well known command in UNIX. It is similar to

electronic mail.

Unlike write command, mail command can be used to send
messages, even when the user is not logged on.

Example
$ mail balaji
subject: About Industrial Visit

We are going for a industrial visit to banglore on 25th jan
2003.We are planning to visit the following places,

HCL Infotech
Satyam info way
Infosys

Mysore

If you are interested please enroll your name to our class
incharge on or before 15th jan 2003. Bye Shaiksulaiman

<ctrl+d> #toend the mail

eot #system indication for end of text

151

Here the UNIX operating system requires the user, to type the
subject before the actual mail text. The above mail sent from
the user shaiksulaiman to balaji will not disturb the user balaji if
he is busy in some program. Once he completes the program,
the following message will be displayed on the screen.

you have new mail

Logout command

This command is used to sign out or terminate the currently

running session and make it available to next user.

Example
$ logout

Login: # the terminal is available for a next user

5.6 TEXT MANIPULATION COMMANDS

In all the above discussions, we have not considered any

mistakes done by the user. The user can commit mistakes
while entering the command or sometimes a wrong entry of
commands may result in to abnormal output for the command.
In order to handle the error situations, the list of keyboard
commands are widely used.

The <enter> key is used to complete the command line. If

this key doesn't work, we can use either <ctrl-j> or <ctrl-m>.

Backspace key is used to move the cursor left and
remove all characters it encounters on the way. If the
backspace key doesn't work, use <ctrl-h>. If the line contains
so many mistakes beyond correction we can kil the line
altogether without executing it by <Ctrl-u>. To terminate the
command prematurely, press the <delete> key (the default on

152

SCO UNIX). On other machines, including Linux, you may need
to press <ctrl-c>

If the display from a command is scrolling too fast we can halt
the output temporarily by pressing <ctrl-s>. To resume
scrolling, press<ctrl-g>.

Summary of keyboard commands

Keystroke Function

<ctrl-s> Stops scrolling of screen output

<ctrl-q> Resumes scrolling of screen output

<delete> Interrupts a command (Use <ctrl-c>if this fails)
<ctrl-d> Terminates login session (use exit also)
<ctrl-h> Erases text (if backspace key doesn't work) *
<ctrl-u> Kills command line without executing it
<ctrl-\> Kills command line without executing it

<ctrl-j> Alternative to <enter>

<ctrl-m> Alternative to <enter>

LEARNING ACTIVITIES
Fill in the Blanks:

1. command allows us to have two way communication

with any persons who is currently logged in.
2. The ... command is used to know the detail of all the

users working on various terminals..

o, S command allows the user to search for the
particular pattern in a single file or in a group of files.

153

LET US SUM UP

At the end of this unit you have understood the concept
of Unix Operating System. It is a time-sharing Operating
System kernel: a program that controls the resources of a
computer and allocates them among its users. Unix is often
taken to include not only the Kernel, but also essential
programs like compilers, editors, command languages,
programs for copying and printing files and so on.

ANSWER TO LEARNING ACTIVITIES
Fill in the Blanks :

1. write
2. 'who'
3. grep
MODEL QUESTIONS

1. Why is UNIX more popular than other operating systems?
2. Which flavours of UNIX run on the Pc?
3. Who owns the UNIX trademark today?

4. When you enter a command, whose clearance has to be
obtained before it can executed?

5. What does multi-taking mean?

REFERENCES
R.G. Dromey ~ How to solve it by Computer — PHI

Andrew S. Tanenbaum - Operating System Design and
Implementation - PHI

154

UNIT -6

VI EDITOR

Structure
Overview
Learning Objectives
6.1 Introduction to VI Editor
6.1.1 Starting with VI
6.1.2 Modes in VI Editor
6.2 Some more Commands
6.2.1 Scrolling commands (screen commands)
6.2.2 The Undo Commands
6.3 Replace Commands
6.4 Control Mode
6.5 Summary of VI Command
Let us sum up
Answer to Learning Activities

References

OVERVIEW

A text editor is used to create and manage text files and

documents. An editor is application software that is usually

bundled with an operating system.

LEARNING OBJECTIVES

After completing this unit, you should be able to:
% Know the Text Editor
% Understand the Commands
% Understand the Control Mode

155

6.1 INTRODUCTION TO VI EDITOR

UNIX system supports two screen editor ed and vi. Of the
two, we will discuss vi, which is more popular. The vi editor is a
visual editor, used to create and edit text files and programs. vi
offers cryptic and sometimes mnemonic internal commands for
editing works. It makes complete use of the keyboard, where
practically every key has a function.

6.1.1 Starting with VI

A vi session starts with vi command and a filename after the
prompt $.

Syntax
$ vi filename<enter>

Example
$ vi students

$ date

Thu Dec 19 13:44:37 IST 2003

$ cat students

Priya

Sneha

Anandhi

Sujitha

$ vi students

“students” 4 lines 24 char

We can run vi like other Unix commands. When we start vi, it
will printout the file name, number of lines and number of

156

characters at the bottom of our screen. Then it will clear the
screen and fill it with the content of the file that we are going to
edit

Priya
Sneha
Anandhi
Sujitha

~
-~

~

~

~

“students” 4 lines 24 char

Now we are presented with a full screen, each line beginning
with a ~(tilde) 'this is vi's way of indicating that they are non-
existent lines. The bottom line is the message line. The
flename appears in this line with the message "student"
[newfile]. If the file exists, then it shows the contents of the file

in command mode.
6.1.2 Modes in VI Editor

vi works in three different modes. The command mode,
the input mode and the ex escape mode.

Command mode where keys are used as commands to act

on text

157

Input Mode where key pressed is entered as text.

Ex escape mode Ex mode commands are entered in last

line of screen to act on text
Command mode

Initially the vi editor is in command mode, to enter into
input mode we have to press the insertion key 'i'. To return
back to the command mode from the input mode, we need to
press escape key <ESC>

The following operation cursor movement, scrolling
(screen movement), editing, searching, saving and quitting -are
performed in command mode.

Cursor Movement

The basic cursor movement commands are h, j, k & | are
left, down, up and right respectively as shown below. Before
using the above keys "ESC" key should be pressed. Here are a
few examples for the above cursor movement commands. Note
that the commands are not echoed on the screen. Assume a file
by name students is already available with 4 names. When we
call the vi editor the following screens will come.

$ vi studentsCR
“students” 4 lines 24 char

The only thing vi shows on the screen is the contents of the
file. From the above figure, we consider the location of the
cursor as the highlighted character. After the key j is pressed
the cursor moves downwards by one character.

158

Priya
Sneha
Anandhi
Suijitha

o
~

“students” 4 lines 24 char
Priya
- Sneha
Anandhi
Sujitha

~
~

~

“students” 4 lines 24 char

move down
Priya
Sneha
Anandhi
Suijitha

£

“students” 4 lines 24 char

Priya
Sneha
Anandhi

159

Sujitha

~

~

“students” 4 lines 24 char

move down
Priya
Sneha
Anandhi
Sujitha

~

“students” 4 lines 24 char
Priya

Sneha

Anandhi

Sujitha

~

“students” 4 lines 24 char

move right
Priya
Sneha
Anandhi
Sujitha

~

160

~

~

“students” 4 lines 24 char
Priya

Sneha

Anandhi

Sujitha

~
~

~

“students” 4 lines 24 char

move up
Priya
Sneha
Anandhi
Sujitha

~

“students” 4 lines 24 char
Priya

Sneha

Anandhi

Sujitha

~

~

~

“students” 4 lines 24 char

161

move right
Priya
Sneha

Anandhi
Sujitha

~
~

“students” 4 lines 24 char

Priya
Sneha
Anandhi
Sujitha

~

“students” 4 lines 24 char

move up
‘Priya
Sneha
Anandhi
Sujitha

~

~

162

~

“students” 4 lines 24 char
Priya

Sneha

Anandhi

Sujitha

~

~

“students” 4 lines 24 char

move left
Priya
Sneha
Anandhi
Sujitha

~

~

“students” 4 lines 24 char
Priya
Sneha

Anandhi

163

Sujitha

~

~

“students” 4 lines 24 char
3j
down 3
Priya
Sneha

Anandhi
Sujitha

~

“students” 4 lines 24 char
Priya

Sneha

Anandhi

Sujitha

~

“students” 4 lines 24 char
3k

164

up 3
Priya
Sneha
Anandhi
Sujitha

~

“students” 4 lines 24 char

All the other cursor movement commands work as shown

above.

6.2 SOME MORE COMMANDS

In order to work faster in vi, the following commands are used.

W - moves forward by a word

e - moves to last character of the word.
b - moves backward by a word

A - takes us to the beginning of the line

$ - takes us to end of the line
| - takes us to last line of the file

g- works like the GOTO command. For example to the fifth

line in file we can say 5g
that we pick the right
bowlers. Zaheer Khan will
surely be the pace

attack’s spearhead, and

165

the left armer has been
surely impressive in
recent times. - The Hindu

“sports” 29 lines 699 char

go to next word

that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
the left armer has been
surely impressive in
recent times. - The Hindu
“sports” 29 lines 699 char
that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
the left armer has been
surely impressive in
recent times. - The Hindu

“sports” 29 lines 699 char

166

go to end of word

that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’'s spearhead, and
the left armer has been
surely impressive in
recent times. - The Hindu
“sports” 29 lines 699 char
that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
the left armer has been
surely impressive in
recent times. - The Hindu

“sports” 29 lines 699 char

go back to previous word
that we pick the right

bowlers. Zaheer Khan will

167

surely be the pace
attack’s spearhead, and
the left armer has been
surely impressive in
recent times. - The Hindu
“sports” 29 lines 699 char
that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
the left armer has been
surely impressive in
recent times. - The Hindu

“sports” 29 lines 699 char

go forward

2 words

that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and

the left armer has been

168

surely impressive in
recent times. - The Hindu
“sports” 29 lines 699 char
6.2.1 Scrolling commands (screen commands)

Here are some scrolling commands, which are frequently used
in Vi editor.

Ctrif - Moves forward by a screen

Ctrlb - Moves backward by a screen

Ctrld - Moves the cursor half of the screen forward.

Ctrlu - Moves the cursor half of the screen backward

Ctrll - It clears any system message that appears on the
screen

Ctrlg - Displays the status on the status line.

Assume the following text is available in a file by nhame ‘sports’.
The content of the file can be displayed by using cat command.
Using vi editor the above scroling commands are
demonstrated.

$ cat sports

The world cup is the
biggest cricketing event,
and picking a side for the
mega-tournament should
only be done after taking

all the factors into

169

consideration. I. have

really thought long and
hard, before arriving at

my squad. My side will
have seven specialist
batsmen. Virender Sehwag,
Sourav Ganguly, Sachin
Tendulkar, Rahul Dravid, V
V S Laxman, Yuvaraj Singh
and Mohammed Kaif. Pick
themselves and this is
bound to be one of the
finest line-up’s in the
competition. Batting will
remain India strength.
However, it is important
that we pick the right
bowlers. Zaheer Khan will
surely be the pace

attack's spearhead, and
the left armer has been
surely impressive in

recent times. - The Hindu

170

$ vi sports
The world cup is the
biggest cricketing event,
and picking a side for the
mega-tournament should
only be done after taking
all the factors into
consideration. | have
“sports” 29 lines 699 char
The world cup is the
biggest cricketing event,
and picking a side for the
mega-tournament should
only be done after taking
all the factors into
consideration. | have
“sports” 29 lines 699 char
6j
down 6 lines
The world cup is the
biggest cricketing event,
and picking a side for the

mega-tournament should

171

only be done after taking
all the factors into
consideration. | have
“sports” 29 lines 699 char
The world cup is the
biggest cricketing event,
and picking a side for the
mega-tournament should
only be done after taking
all the factors into
consideration. | have

“sports” 29 lines 699 char

down 1 line

biggest cricketing event,
and picking a side for the
mega-tournament should
only be done after taking
all the factors into
consideration. | have
really thought long and
“sports” 29 lines 699 char

biggest cricketing event,

172

and picking a side for the
mega-tournament should
only be done after taking
all the factors into
consideration. | have
really thought long and

“sports” 29 lines 699 char

down 1 line

and picking a side for the
mega-tournament should
only be done after taking
all the factors into
consideration. | have
really thought long and
hard, before arriving at
“sports” 29 lines 699 char
and picking a side for the
mega-tournament should
only be done after taking
all the factors into
consideration. | have

really thought long and

173

hard, before arriving at
“sports” 29 lines 699 char
4j
down 4 lines
consideration. | have
really thought long and
hard, before arriving at
my squad. My side will
have seven specialist
batsmen. Virender Sehwag,
Sourav Ganguly, Sachin
“sports” 29 lines 699 char
consideration. | have
really thought long and
hard, before arriving at
my squad. My side will
have seven specialist
batsmen. Virender Sehwag,
Sourav Ganguly, Sachin
“sports” 29 lines 699 char
D
down 1/2 screen

have seven specialist

174

batsmen. Virender Sehwag,
Sourav Ganguly, Sachin
Tendulkar, Rahul Dravid, V
V S Laxman, Yuvaraj Singh
and Mohammed Kaif. Pick
themselves and this is

“sports” 29 lines 699 char

have seven specialist
batsmen. Virender Sehwag,
Sourav Ganguly, Sachin
Tendulkar, Rahul Dravid, V
V S Laxman, Yuvaraj Singh
and Mohammed Kaif. Pick
themselves and this is
“sports” 29 lines 699 char
AD
down 1/2 screen
V S Laxman, Yuvaraj Singh
and Mohammed Kaif. Pick
themselves and this is
bound to be one of the

finest line-up’s in the

175

competition. Batting will
remain India strength.
“sports” 29 lines 699 char
V S Laxman, Yuvaraj Singh
and Mohammed Kaif. Pick
themselves and this is
bound to be one of the
finest line-up’s in the
competition. Batting will
remain India strength.
“sports” 29 lines 699 char
Al
up 1/2 screen
have seven specialist
batsmen. Virender Sehwag,
Sourav Ganguly, Sachin
Tendulkar, Rahul Dravid, V
V S Laxman, Yuvaraj Singh
and Mohammed Kaif. Pick
themselves and this is

“sports” 29 lines 699 char

176

Input Mode

Initially the vi editor is in command mode, to enter into
input mode we have to press the insertion key 'i'. To return
back to the command mode from the input mode, we need to

press escape key. <ESC>.
Editing Commands

Editing commands involve different operations such as
insertion, deletion, copy and etc. these operations are

discussed below.
Insertion commands

The simplest type of input is insertior: of text. To insert a
text at the cursor position, assuming you are in command
mode, press the character 'i'. Pressing this character i, will
change the mode from command to input mode. Further key
press will result in text being entered and displayed on the
screen. Enter key is used to go to the next line.

Insert command can also work as append command by
placing the cursor to the required place and then by pressing
character ‘a'. Now everything we type is appended to the text
after the character where the cursor was positioned over. The
following examples illustrate this concept.

Priya
Sneha
Anandhi
Sujitha

~

177

~

“students” 4 lines 24 char
axxyyzz
add xxyyzz
Prxxyyzziya
Sneha
Anandhi
Sujitha

~

“students” 4 lines 30 char

When we complete adding text we have to press ESC
key. By doing so, the cursor will move back to the last
character that we have entered. After this we are not in insert
mode. We will be in command mode.

Prxxyyzziya
Sneha
Anandhi
Sujitha

~

~

“students” 4 lines 30 char
ESC

Prxxyyzziya

178

Sneha
Anandhi
Sujitha

~

~

“students” 4 lines 30 char

We can even put RETURN in the added text. By doing so a
new line will be appended.

Prxxyyzziya
Sneha
Anandhi
Sujitha

~

“students” 4 lines 30 char
aoneCR
twoESC
embedded CR

Prxxyyzzone
twoiya
Sneha
Anandhi
Sujitha

~

179

~

“students” 5 lines 36 char
Prxxyyzzone

twoiya

Sneha

Anandhi

Sujitha

~

~

“students” 5 lines 36 char
3j
down 3
Prxxyyzzone
twoiya
Sneha
Anandhi
Sujitha

~

~

“students” 5 lines 36 char
Prxxyyzzone

twoiya

Sneha

Anandhi

Sujitha

~

180

~

“students” 5 lines 36 char

iabcESC
insert abc
Prxxyyzzone
twoiya
Sneha
Anandhi
Suabcjitha

~

~

“students” 5 lines 39 char

Note: Pressing the ESC key after typing the text ends the
insertion mode and enters into command mode.

Some more commands

O - allows insertion by creating a blank line above the
current line

o -allows insertion by creating a blank line below the
current line

A -used for appending the text. The text is appended at
the end the line

Delete Command (works in command mode)

Basically there are two commands that delete text in vi
X and dd. To delete one character at the current cursor
position, we use x command. And also, a number to indicate

181

how many characters to delete, can precede the x command,

which is shown as below:
Prxxyyzzone
twoiya
Sneha
Anandhi

Suabcjitha

~

~

“students” 5 lines 39 char

delete “c”

Prxxyyzzone
twoiya
Sneha
Anandhi
Suabjitha

~

~

“students” 5 lines 38 char
Prxxyyzzone

twoiya

Sneha

Anandhi

182

Suabjitha

~

~

“students” 5 lines 38 char

“wn

J
Prxxyyzzone

delete

twoiya
Sneha

Anandhi
Suabitha

“students” 5 lines 37 char
Prxxyyzzone

twoiya

Sneha

Anandhi

Suabitha

~

“students” 5 lines 37 char

4x

delete “itha”

183

Prxxyyzzone
twoiya
Sneha
Anandhi

Suab

~

~

“students” 5 lines 33 char
Prxxyyzzone

twoiya

Sneha

Anandhi

Suab

~

~

“students” 5 lines 33 char

delete “suab”
Prxxyyzzone
twoiya
Sneha

Anandhi

~

184

XXXX

~

“students” 5 lines 29 char
Prxxyyzzone

twoiya

Sneha

Anandhi

-~

~

“students” 5 lines 29 char

beep
Prxxyyzzone
twoiya
Sneha

Anandhi

~

~

“students” 5 lines 29 char

To delete a line, you can use the dd command. A number to

indicate the number of lines to delete can also precede it.

x - deletes the characters before the cursor position

d - deletes line from the current position to the end of the

line.

dd- deletes the entire line in the cursor position

185

Prxxyyzzone
twoiya
Sneha

Anandhi

~

~

“students” 5 lines 29 char
dd
delete line
Prxxyyzzone
twoiya
Sneha

Anandhi

~

~

“students” 4 lines 29 char
Prxxyyzzone

twoiya

Sneha

Anandhi

i~

~

186

~

“students” 4 lines 29 char

move up 3
Prxxyyzzone
twoiya
Sneha

Anandhi

~
~

~

“students” 4 lines 29 char

delete 3 lines

Prxxyyzzone

~
~
~
~
~

~

“students” 1 lines 11 char

Prxxyyzzone

~
i~

i~

3k

3dd

187

~

“students” 1 lines 11 char

undo last delete
Prxxyyzzone
twoiya

Sneha

Anandhi

~
~

~

“students” 4 lines 29 char
Prxxyyzzone

twoiya

Sneha

Anandhi

~

~

“students” 5 lines 29 char

delete line
Prxxyyzzone
twoiya
Sneha

188

Anandhi

~
~

~

“students” 4 lines 29 char
Prxxyyzzone

twoiya

Sneha

Anandhi

~

~

“students” 4 lines 29 char

move up 3

Prxxyyzzone
twoiya
Sneha

Anandhi

~

~

“students” 4 lines 29 char

3k

189

Prxxyyzzone
twoiya
Sneha

Anandhi

~

~

“students” 4 lines 29 char

3dd

delete 3 lines

Prxxyyzzone

~

~

“students” 1 lines 11 char
6.2.2 The Undo Commands (works in command mode)

vi has powerful undo features. The commands used for
undo operation is the key 'u'. suppose we want to undo the last
delete operation. It can be done as shown below

190

The other undo command is 'U' which will undo all the
changes in the current line, where as ‘u’ undo’s only the recent
change.

Prxxyyzzone

~

~

“students” 1 lines 11 char

undo last delete
Prxxyyzzone
twoiya

Sneha

Anandhi

~

~

“students” 4 lines 29 char

6.3 REPLACE COMMANDS

Text can be replaced with any of the following

commands r R, s and S. To replace a single character, by

191

another r can be used. This can be explained with the

following example. The r command works in command mode.

that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
new text

the left armer has been
surely impressive in

“sports” 30 lines 697 char

replace “t” with “2”

that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
new tex2 |

the left armer has been
surely impressive in

“sports” 30 lines 697 char

r2

To replace more than one character, we can make use of other

replace command 'R', which replaces text as the cursor moves

right. Note: R command works in Input Mode.

that we pick the right

192

bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
new tex2
the left armer has been
surely impressive in
“sports” 30 lines 697 char
R6789ESC
replace text
that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
6789tex2
the left armer has been
surely impressive in
“sports” 30 lines 697 char
Some more commands

S - replace single character under cursor

with any number of characters
Cc - replace the entire line

Cw - replace a word

193

Search Commands (works in command mode)

Lines containing a string, can also be located by prefixing
the string with the/(front slash) to locate the first occurrence of
the string "muthu", simply enter

[muthu<eneter> #search forward for the string "muthu”

likewise the sequence

?anand<center> #search backward for the most previous
instance of the anand

Note: The / searches in the forward direction while the ?
searches in the reverse direction.

Some more commands

fx - finds the character, x on the current line after the
current cursor position.

Fx- finds the character , x before the cursor position in the
current line.

6.4 CONTROL MODE

Search and Replace Commands

vi offers yet another powerful feature, the substitution or
the replacement. This is achieved with the ex escape mode's s
(substitute) commands.

The address % represents all lines in the file, g makes it
truly global. If the pattern cannot be found, vi responds with the
following message.

Saving and Quitting Commands

When we edit a file using vi, the original file is not
disturbed as such, a copy of the file is placed in buffer. From

194

time to time we should save our work by writing the buffer
contents to disk.

Saving Text

To save a file and remain in the editing mode, use the w(write)
command preceded by colon "'

Example
‘w<enter>
$
that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
the left armer has been
surely impressive in
recent times. - The Hindu
‘WCR
| WCR
write file
that we pick the right
bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
the left armer has been

surely impressive in

195

recent times. - The Hindu
“sports” 29 lines 689 char

with the w command you can optionally specify a filename as
well. In that case, the contents are separately written to
another file.

The above command keeps you in the command mode
so that you can continue editing. However, to save and quit the
editor, use the 'x'(exit) command instead.

Example
:x<enter>

$

Note: Instead of using :x command it is better to use :wq
command or :z command

that we pick the right

bowlers. Zaheer Khan will

surely be the pace

attack’s spearhead, and

the left armer has been

surely impressive in

recent times. - The Hindu
‘WCR

:‘WCR

write file

that we pick the right

196

bowlers. Zaheer Khan will
surely be the pace
attack’s spearhead, and
the left armer has been
surely impressive in
recent times. - The Hindu

“sports” 29 lines 689 char

6.5 SUMMARY OF VI COMMAND

Using vi from UNIX
$ vi file edit file
$ vi -r file recover file from crash

Note: most of the following vi commands may be preceded by

a number for repetition.

Basic cursor motions

hjkl oooo

CR Down line to first non-blank
O[zero] Beginning of line

Screen control

AU AD Up or down half page

B A Up or down whole page

AL Reprint page

Character input modes

ta Append after cursor

197

TA
Ti
Tl
to
1O

Append at end of line
Insert before cursor

Insert before first non-blank
Add lines after current line

Add lines before current line

Delete and change

dd
toe
D
tC
X

1s
1S
rchr

R

Delete line

Change line

Delete from cursor to EOL
Change from cursor to EOL
Delete character

Change character

Change line

Replace current chr with chr

Overprint change

Word commands

w

b

e

dw
Tew
Search

Istring/

198

Next word
Back word
End of word
Delete word

Change word

Search for string

?string? Reverse search for string
n Repeat last / or ?

N Reverse of n

Generic commands

object is any cursor motion: w for werd; b for back word; h, j, k,
| for left, down, up, right; /string for upto string etc.

dobject Delete object

tcobject Change object
Miscellaneous

u Undo previous command
U Restore entire line

yobject Save object in temp buffer

Y Save line(s) in temp buffer
p Put saved buffer after cursor
P Put saved buffer before cursor

Control commands

‘W Write file

wq Write file and quit

q Quit

.q! Quit (override checks)

‘ed-num Run the ed command ed-cmd
:num Goto line num

zz Same as :q

199

tNote: all commands marked with 1 enter input mode and are
exited with the escape (ESC) character.

LEARNING ACTIVITIES
Fill in the Blanks:

1. A........ is used to create and manage text files and
documents.

2. The couine is a visual editor, used to create and edit text
files and programs.

<, involve different operations such as
insertion, deletion, copy and etc.

LET US SUM UP
At the end of this unit you have understood the concept

of Text Editor, the most popular text editor is VI. UNIX system
supports two screen editor ed and vi.

ANSWER TO LEARNING ACTIVITIES
" Fill in the Blanks:

1. Text editor
2. vieditor

3. Editing commands

REFERENCES
R.G. Dromey — How to solve it by Computer — PHI

Andrew S. Tanenbaum — Operating System Design and
Implementation - PHI

200

UNIT -7

Structure
Overview
Learning Objectives
7.1 Standard Output
7.2 Standard Input
7.3 Redirection
7.3.1 Output Redirection
7.3.2 Input Redirection
7.4 Standard Error
Let us sum up
Answer to Learning Activities
References

INPUT AND OUTPUT

OVERVIEW

Almost all command in UNIX system takes input from the

keyboard and send the resulting output to the display unit.

Internally UNIX operating system reads it's input from a place

called as standard input which happens to be the terminal.

Similarly output are written on to a place called as standard

output which is also our terminal by default.

LEARNING OBJECTIVES

After completing this unit, you should be able to:

*

X4

<

e

%

0,
0.0

< Know the Standard Output
Understand the Standard Input
Understand the Redirection
Know the Standard Error

201

7.1 STANDARD OUTPUT

To discuss the standard output let us take the ‘who’
command. ‘who’ command displace the currently logged in
users. In technical terms, ‘who’ command writes a list of logged

in users to standard output (video display unit).
Example

$who

vel tty03 Jan5 09:45

anand tty06 Jan5 09:57

raja tty01 Jan5 10:02

raj tty03 Jan5 10:40

7.2 STANDARD INPUT

Each input command considers it's own input as a stream.
The streams can come from different sources. The following is
the list of streams for input commands.

1) Keyboard (i.e. keyed in by the user. This is the default
source)

2) A file (using redirection)
3) Another program (using the concept of pipeline)

In our previous examples, the following input commands ‘cat’
and ‘wc’ are used with filename as arguments. Both the
commands have a built in mechanism, to take the input from

standard input device also.

Example1

$ we

202

Now I, am learning UNIX operating system
| find it is useful.

<ctrl-d>

2 1248

In the above example ‘wc’ command gets the input from the

standard input device(keyboard)

Example2

when a sort command is executed without a filename
argument, then the command will take input from the standard

input(keyboard terminal)Example1

$ sort
Tamil
Raju
Ragu
Divya
<ctrl-d>
Divya
Ragu
Raju
Tamil

$
7.3 REDIRECTION

Apart from the standard input available in Unix, input can
be taken from other sources and can be passed to any

203

destination other than the standard outputs. This process is
called redirection. There are two types of redirection:

1. Input redirection
2. Output redirection -
The shell is completely responsible for the redirection.

7.3.1 Output Redirection

When output from a process is redirected to any
destination other than the standard output i.e. terminal, it is
called output redirection

Syntax
$command>file

Here the output is redirected to the file specified instead of
VDU.

Example1
$date>today

This command sends the data to the file today. It concordinates

the content with its file as follows
$cat today

Output
wed apr 2 11:33:31 pst 1992

Example2
$ who>usernames

~The above command line makes the ‘who’ command to
execute and write lthe output in to the file named "usernames".

To see the content of the file we can use cat command. If the

204

output file doesn't exist, shell will create before executing the
command. If the file exists, its content will be erased.

$cat usernames

vel tty03 Jan 5 09:45
anand tty06 Jan 5 09:57
raja tty01 Jan 5 10:02
raj tty03 Jan 5 10:40

We can also redirect the output of a command to a file in an

append mode.

Syntax

$command >> filename
Example
$who >> students

Sometimes two or more commands can be combined and the
aggregate output can be sent to a file. A pair of parentheses is
used to group the command

Example

(Is -1 ; who) > students

Note: when the output of a command is redirected to a file, the
output file is created by the shell before the command is

executed.
7.3.2 Input Redirection

Similar to the output redirection, here the input is
redirected from a source file rather than the standard input.

This is called input redirection

205

Syntax

$command<filename

Here filename is the input source. If the specified file is not
found, the shell will report an error.

Example1
$ cat<usernames
vel tty03 Jan 5 09:45
anand tty06 Jan 5 09:57
raja tty01 Jan § 10:02
raj tty03 Jan 5 10:40

The input source file used is usernames, whose content is input
to the cat command.

Example2
$we - | < usernames
4
Combining standard input and output redirection

Both input and output redirection can be combined in a
command. The < and > operators can be combined to use both

forms of redirection in a single command line.

Example
$wc < usernames > usercount # first input, then output
$wc > usernames < usercount # first output, then input

$> usernames < usercount wc # As above, but command
at end

206

7.4 STANDARD ERROR

It includes all the error messages written to the terminal.
This output is generated either by command or by the shell. In
both the cases the default destination is the terminal. Like
standard output, this can also be redirected to a file. (Either
using > or >> symbol).

Example

Assume a file "user" is not available. If we try to display the
content of the file using cat command error will occur and we
can redirect it to any file so that it will be useful for future

references.
$cat user > errorfile
cat: cannot open user: No such file or directory (error 2)

Note: The standard input , standard output and standard error
has a number called file descriptor. This is used for

identification purposes.
O File descriptor O represents standard input
O File descriptor 1 represents standard output
0 File descriptor 2 represents standard error

Normally it is not necessary to prefix the numbers 0 and
1.However; we need to use the descriptor 2 for the standard

error
$cat username 2 >> errorfile
. $cat errorfile
cat: cannot open user: No such file or directory (error 2)

cat: cannot open username:No such file or directory (error 2)

207

LEARNING ACTIVITIES
Fill in the Blanks:

1. Internally UNIX operating system reads it's input from a

place called as
2. The is completely responsible for the redirection.
L
3. The standard input, standard output and standard error

has a number called.................

LET US SUM UP
At the end of this unit you have understood all the

computer’'s I/O (Input/Output) devices. It must issue commands
to the devices, catch interrupts, and handle errors. It should
also provide an interface between the devices and the rest of
the system that is simple and easy to use. To the extent
possible, the interface should be the same for all devices. The
I/0 code represents a significant fraction of the total Operating
System.

ANSWER TO LEARNING ACTIVITIES
Fill in the Blanks:

1. Standard input.
2. Shell
3. File descriptor

REFERENCES
R.G. Dromey — How to solve it by Computer — PHI

Andrew S. Tanenbaum - Operating System Design and

Implementation - PHI

208

UNIT -8

PIPES & FILTERS

Structure

Overview

Learning Objectives

8.1 Pipes

8.2 Filters
8.2.1 Type of Filters
8.2.2 Sort Filter

8.3 File Permissions

Let us sum up

Answer to Learning Activities

References

OVERVIEW
In UNIX, commands are used to perform single tasks

only. If at all we want to perform multiple tasks in one
command, it is not possible. Redirection provides solution to
this problem. But, it creates lot of temporary files, which are
redundant and occupy more disk space. Pipes and filters

provides the solution to this problem.

LEARNING OBJECTIVES

After completing this unit, you should be able to:

% Know the Pipes
< Familiar with File Permissions

+» Understand the Filters

209

8.1 PIPES

Pipes are a mechanism which takes the output of a
command as its input for the next command.
Example1

$ who > usernames
$ we -l usernames
4

The above example illustrates there are four users currently
logged in. This command uses the files and redirection
operators to get the number of users. The same result can be

obtained with the help of pipes as shown below
$ who | we - |
4

The 'who' command is used to show the details of all who have
currently logged in the Unix system. The 'wc' command is used
to count the number of lines, words or characters in a file. So
the output of the 'who' command is the input for the 'wc-l
command.

Example2
$ cat text | head -3

In this statement, 'head' displays the initial 3 lines-of the named
text. The 'cat’ command displays the contents of the file we
specify. The output of this statement will be the display of the
first three lines of the file text.

Example3

$who > users

210

vel tty03 Jan5 09:45
anand tty06 Jan 5 09:57

raja tty01 Jan 5 10:02
raj tty03 Jan 5 10:40
$sort users

anand tty06 Jan 5 09:57
raj tty03 Jan 5 10:40
raja ttyo1 - Jan5 - 10:02

vel tty03 Jan § 09:45
Using pipes the above ouiput can be obtained without using
files

$ who | sort

anand tty06 Jan 5 09:57
raj tty03 Jan 5 10:40
raja tty01 Jan 5 10:02
vel tty03 Jan5 09:45

8.2 FILTERS
A filter gets the input from the standard input, processes
it, and -sends to the standard output. Sometimes, the input is

also taken from a file.

Uses of filters
O Extract lines with a particular pattern.
O Sort afile.

O Replacing existing characters with the new ones.

211

O Storing intermediate outputs of a long pipe.
0 To get particular columns of a file.
O Merging two or more files together using filters.

8.2.1 Type of Filters

Various types of filters exist in Unix. Some of them are

Sort filter Arrange input in alphabetical

grep filter Global search for regular expression

uniq filter Prevents multiple occurrences of files

pg filter Output is shown page by page

More filter Output is shown screenful by space bar
8.2.2 Sort Filter

It is used to customize the output with various options.
The 'sort' filter arranges the input taken from the standard input
in alphabetical order. It comes with various options like

r option Sort in reverse alphabetical order

f option Ignores case distinction

s option Sorts usihg numerical values

t option Specifies field separator (character)
Example

$ sort

Ram

Arul

Seetha

212

Output
Arul

Ram
Seetha

From this example, we see that a set of names is taken as

input and the same is displayed in alphabetical order.
r OPTION

Sort command when used with this option will display the input
stored in reverse alphabetical order

Input
$ sort -r
Raj
Geetha
Priya

Output
Raj
Priya
Geetha

From the example, it is seen that the names are sorted in
reverse alphabetical order.

f OPTION

Sorting of digits, alphabets and other special characters is
usually done by comparing their ASCII values. It should be
noted that ASCII values for A to Z is lesser than that of a to z.

413

This case distinction is ignored using the sort command with f
option.

Example
$ sort -f
Ram
Raj
Priya
Preetha

The output will be
Preetha
Priya
Raj
Ram

n Option

When sorting numbers, incorrect results are due to comparison
of their ASCII values.

For example,

ASCII value of 10 is less than 2 and is placed above 2, which is
an error. The n option will sort the input given using their
numerical values and then display it.

Example
$ sort -n
28
8

214

39

Output
8
28
39
THE +pos1 -pos2 OPTION

Assume a file containing names in the following format
First name middle name last name

These are separated by single spaces. Each column is called a
field. If we want to sort on any one field, and then sort is used

with the option
"+pos1-pos2" option
Example
$ cat names
Raj Kumar Anand
John Mathew Thomas
Victoria Thomas Becker
Mohammed Ali Rafi
To sort on the middle name,
$ s.ort +1 -2 names.
Output
Mohammed ali rafi
Raj Kumar Anand

Jojn Victoria Thomas

219

Similarly, name can be sorted on the first and last names also

t option

Usually, the field separator is a blank space or a tab space. But
if it is a character, these can be specified using the t-option.

Example
$ cat names
Raj:Kumar:Anand
John:Mathew:Thomas
Victoria: Thomas:becker

In this example, the field separator is a colon. To sort on any
one field,

$sort-t""+2-3
Raja :Kumar :Anand
John: Mathew:Thomas

Vivtoria: Thomas:Becker

8.3 FILE PERMISSIONS

File Security using access permission

File security deals with who can access a file and what
they can do with the file. For example you might want a file
containing some sensitive information to be unreadable by
other users or groups. At the same time you might want
another file to be accessed by everyone. This is implemented in
UNIX by giving suitable access permission for a file to users
and/or groups. The following access permissions are
implemented for a file in UNIX system.

216

1. Read access
2. Write access
3. Execute access

The above access permissions can be implemented for an
individual owner, group, others. UNIX system uses the
following access permission flags for every file.

Example

Assume a file by name priya.dat is available. This can be
confirmed by running the following command

$ Is -l priya.dat
-rwxrwxrwx 1 raj csc 80 Jun 27 20:23 priya.dat

The first character is '-' which indicates that priya.dat is a file
and not a directory. If it was a directory, it would have

displayed’d’ instead of '-'.

There are three set of 'rwx' which indicates access permission

for owner, group, others

- Irwx rwx rwXx

owner group others

where
r = read
w = write

x = executable

217

By properly setting the flag patterns for each set, the user can
grant / remove access permission for that particular owner,

group and others by using chown or chmod or chgrp.

chmod

chmod is used to set all the three access permission for
owner, group and others.

Syntax

$ chmod usertype operation access_permission file(s)

where
usertype - owner, group or others
operation - add/remove

access_permission

read, write and execute
file(s) - one or more files
Example
$ Is -l priya.dat
-rwxrwxrwx 1 raj csc 80 Jun 27 20:23 priya.dat

In the above example the file priya.dat has full access rights to
all the category of users.

To deny read access to groups and for others the following
command is issed

$ chmod g -r o -r priya.dat
$ Is -l priya.dat

-rwx-wx-wx 1 raj csc 80 Jun 27 20:23 priya.dat

218

- UserType . Operation Access_Permission |
Lo |
u-user + grant r- read |
- g-group - remove w - write
' 0-others X - execute
' a-all
umask

umask command can be used to set the default creation
mode of users file and directories. This command is mostly
used by the administrators.

Syntax

$ umask accessflags

Typical umask modes

Command | Description

umask 002 | Create files without write permission for
others

umask 002 | Create files without write for group or others

umask 006 | Create files without read or write for others

umask 026 | Create files without read or write for others

and without write for group

umask 007 Cljeate files without read, write, or execute

for others

umask 077 | Create files without read, write or execute for

dnyone but for the owner

219

LEARNING ACTIVITIES

Fill in the Blanks:
[is @ mechanism which takes the output of a
command as its input for the next command.
2 7 AT—— gets the input from the standard input,
processes it, and sends to the standard output.
. 8 - e filter arranges the input taken from the

standard input in alphabetical order.

LET US SUM UP

At the end of this unit you have understood the Pipes and
Filters. Pipes are a mechanism which takes the output of a
command as its input for the next command. A filter gets the
input from the standard input, processes it, and sends to the

standard output. Sometimes, the input is also taken from a file.

ANSWER TO LEARNING ACTIVITIES

Fill in the Blanks:
- 1. Pipes
2. Filter
3. 'sort'

MODEL QUESTIONS

1. Define Pipe.
2. Define Filter.

REFERENCES
R.G. Dromey — How to solve it by Computer — PHI

Andrew S. Tanenbaum — Operating System Design and

Implementation - PHI

220

BLOCK 3 INTRODUCTION |

At the end of this block you will know the Programming in
Unix. Although most users think of the shell as an interactive
command interpreter, it is really a programming language in
which each statement runs a command. Because it must satisfy
both the interactive and programming aspects of command
execution, it is a strange language, shaped as much by history
as by design. This block explains the basics of shell
programming by showing the evolution of some useful shell

programs.

Introduction to System Software is divided into Four Blocks.

Block 3 consists of Three Units.

Unit 9: discusses how to use the shell for writing programs that
will stand up to use.by other people. Topics include more

advanced control flow and variables.

Unit 10: deals with the Control Statements. The shell
programming also has the facilities by using ‘for’ and the ‘while’

loops.

Unit 11: is a discussion of the UNIX file system. To talk
comfortably about commands and their interrelationships, we
need a good backgrbund in the structure and outer workings of

the file system.

221

UNIT -9

SHELL SCRIPT

Structure
Overview
Learning Objectives
9.1 Introduction
9.2 Functions of Shell
9.2.1 Command Line Structure
9.2.2 Execution of a Shell Script
9.3 Shell Variables
9.3.1 Assigning value to a shell variable
9.3.2 Using shell variables
9.3.3 Reading data from Terminal/User
9.3.4 Arithmetic operations with shell variables
Let us sum up
Answer to Learning Activities

References

OVERVIEW

The shell or the command interpreter is a program that
interprets your request to run the UNIX commands. This can be
stored in a file. The shell can read the file and execute the
command in it. When the system prints the prompt $ and you

type commands that get executed, it's not the kernel that is
talking to you, but a go-between called the command
interpreter or shell. The shell is just an ordinary program like

data or who, although it can do some remarkable things.

222

LEARNING OBJECTIVES

After completing this unit, you should be able to:
% Know the Shell Script

+» Familiar with Functions of Shell

< Understand the Shell variable

9.1 INTRODUCTION

The shell or the command interpreter is a program that
interprets your request to run the UNIX commands. This can be
stored in a file. The shell can read the file and execute the
command in it; such a file is called a SCRIPT FILE. The UNIX
operating system is flexible in a way that it is not tied to any

particular command interpreter.

These are currently three popular shells.
The "Bourne shell" sh
The "C shell" csh
The "Korn shell" ksh

The korn shell and Bourne shell was prepared by Stephen
Bourne and Davuid Korn respectively. The "c shell" was
developed at the university of California at Berkeley which

resembles the ¢ programming language.

The Bourne shell is currently distributed with standard
AT&T UNIX systems. The Korn shell is compatible with borne
shell but shell is not. The user prompt for ¢ shell is '%'. If the

user prompt is '#' then the shell is administrator shell.

223

9.2 FUNCTIONS OF SHELL

Program Execution

When the shell is waiting for the response of the
programmer to enter the command, it displays the $ prompt.
Once you type in your command and press <return> the shell
analyzes the line. This line is commonly known as command

line.

9.2.1 Command Line Structure

The command line structure is as follows
$ command argument

The simplest command is single word, usually name of a file for

execution.
$ who <enter>

The above command gives details of the currently logged user.
$ who am i<enter>

this command gives information about the currently working

user.

A command usually ends with a new line, but a semicolon; is

also a command terminator or delimiter.
$ date; <enter>

This command gives the current date along with time.
i.e., wed sep 28 09:07:15 EDT 1983

9.2.2 Execution of a Shell Script

The UNIX operating system does not grant permission to

execute any of its files. A file canon be directly executed, it can

224

be executed using sh command. For instance, to execute a
script called general, the command is

$ sh general<enter>

To execute a shell script directly at the $ prompt we have to
change the File Access Permission (FAP) of the specified shell
script by generating the execute permission. For instance, to
execute the shell script called general,

$ chmod u+x general #change File Access
Permission

#to Execute#
$ general #execute the shell script#
File name substitution

When file name substitution is specified on the command
line with the wild characters such *, ?, [...], then the shell will
perform substitution. This happens before the program gets
executed.

I/0 Redirection

If input and/or output redirection is specified on the

command line then I/O redirection is handled by shell.
Pipeline hookup

If the command line contains two commands connected
by a pipe then the shell takes responsibility of connecting the

output of first program to the input of the second.

Example

$ who | we -

225

Environment control

Shell gives us flexibility in customizing our command line
environment as per our needs. This environment includes a
path name of our home directory, the directories those will be
searched by the shell, whenever a name of a file is specified to
be executed.

Interpretive programming languages

The shell provides a powerful programming language.
The statements in this language can be typed in directly at the

terminal for execution or can be entered into a file.
The echo command

The echo command is similar to the 'printf' statement in C
language. This command is used to display messages on the
screen. For example,

$ echo UNIX is an operating system<enter>

UNIX is an operating system
The echo command displays the text and then puts a new line
character at the need of the next. The new line character
causes the cursor to move to the next line after the text is

displayed.
Example
$ echo UNIX is an operating system\007

WIill display the cursor on the same line of the screen after
displaying the a.rgumen‘t UNIXis an.operating system\n

Will display an additional blank line after the argument.

226

9.3 SHELL VARIABLES

All variables in UNIX are treated as character strings. A
shell variable name begins with a letter (upper or lowercase) or
underscore character and optionally is followed by a sequence
of letters, underscore characters or numeric characters.

ab

total
output_file
ROOTDIR
_cflag

are examples of valid shell variable names, whereas the names

5a #cannot begin with numeric character#
.home #'.' Is not a valid character#
echo #keyword are not allowed as variable#

are invalid shell variable names
9.3.1 Assigning value to a shell variable

In UNIX variables are not explicitly declared. They are
created at any point of time, by a simple assignment of value. A

_ variable can be created as follows,
<variable name>=<value>-
Example
$area=100
$echo $ area

100

227

Here, the value of the shell variable 'area’ is displayed.

Note: spaces are not allowed before and after the assignment
operator.

If the value of the variable is a string of characters, in such a

case it is advisory to enclose the string within double quotes.
Example

$ variable="top class"

$ echo Your performance is $variable

echo Your performance is top class

Whenever shell encounters a dollar sign followed by a variable
name, the value of that variable gets substituted at that same
point by the shell. This explains the output from the following

sequence of commands.
$ height=180
$ echo the height of the cylinder is $height
#the output for the above shell script is as follows#
the height of the cylinder is 180
$
It can also be used as command arguments.
$ variable= "top"
$ we-l $variable
150 top
$

This command gives the number of lines in the file named

variable.

228

9.3.2 Using shell variables

The shell variables can be used as command line
arguments.

Example
$ file=emp.txt #assume emp.txt has 100 lines
$ wc -| $file
100 emp.txt
$

Sometimes the value of one shell variable can be assigned to
another shell variable.

$ file=emp.txt #assume emp.txt has 100 lines
$ file2=$%file

$ we -l $file2

100 emp.txt

$

9.3.3 Reading data from Terminal/User

The shell allows the user to enter a value into a variable
during execution of a shell script. This is done using the read
command. The general syntax is

read <file name>

The read command in UNIX is similar to 'scanf' statement in ¢

language.
For example,
$ echo "Enter your name: \c"; read name

Enter your name: Mohanakrishnan

229

$ echo $name
Mohanakrishnan

In the above program \c is used to keep the cursor in the same
line and wait for user's input.
Example,

$readab

onethousand two hundred and twenty rupees
$ echo :$a:$b

:onethousand:two hundred and twenty rupees
$

In the above program, values typed in are delimited by blanks
or tabs. That's the reason, why variable ‘a’ has got one
thousand and variable ‘b’ has got two thousand and twenty
rupees.

9.3.4 Arithmetic operations with shell variables

As already said, the shell does not support numeric
variable. All the variable are treated as character strings. The

declaration,
A=96

Means that the variable A contains character 9 and 6 and not
the number 96.

The "expr" command in UNIX is used to evaluate expressions.
For example,

$ expr 10 + 20
Will display 30 on the screen

Note: There must be space on either side of the operator + .

230

Consider the example

$a

20

$a='expr $a + 20'

would assign 40 to a.

LEARNING ACTIVITIES

Fill in the Blanks:

13

g [| e e—— is a program that interprets your
request to run the UNIX commands.

The displays the text and then puts a new line
character at the need of the next.

T v can be used as command line arguments.

LET US SUM UP

The shell - the program that interprets your requests to

run programs — is the most important program for most UNIX

users; with the possible exception of your favorite text editor,

you could spend more time working with the shell than any

other program.

ANSWER TO LEARNING ACTIVITIES

Fill in the Blanks:

1. shell or the command interpreter

2. echo command

3. shell variables

231

MODEL QUESTION

1. Describe the Functions of Shell.

2.Write a shell script to find smallest of two numbers.

3.Write a shell script to find sum of given numbers.

4. Write shell scripts to find the given number is add or even.

5.Write a shell script to find a factorial of a number.

6.Write a shell script to find the given number is positive or
negative or zero.

7. Write a shell script to print odd numbers upto 'n'.

REFERENCES
R.G. Dromey — How to solve it by Computer — PHI

Andrew S. Tanenbaum — Operating System Design and
Implementation - PHI

232

UNIT - 10

CONTROL STATEMENTS

Structure

Overview

Learning Objectives

10.1 Control Statements
-10.1.1 Different types of if construct

10.2 * Case Statement

10.3 lterative Statements
10.3.1 for Loop
10.3.2 While Loop

Let us sum up

Answer to Learning Activities

References

OVERVIEW
All programming languages provide some statements that

allows a programmer to do some actions based upon some test

conditions.

LEARNING OBJECTIVES

After completing this unit, you should be able to:

+ Know the Control Statements
« Familiar with Case Statement
« Understand the lterative Statements

10.1 CONTROL STATEMENTS

In shell, the if performs this functionality.

Normally in shell script, the test conditions are obtained using

relational operators as follows:

Operator | Used to test if Example

= Two strings are equal "$a" = yahoo

= Two strings are not equal | "$user"!= priya

-n A string has nonzero | -n"$a"
length
-Z A string has zero length -z "$file"
-eq Two integers are equal "$sum" -eq 30
-ne Two integers are not equal | "$count" -ne 3

-It One integer is less than | "$a" - It 334

another
-le One integer is less than or | "$count1" -le
equal to another 433

-gt One integer is greater | "$a" - gt 334
than another

-ge One integer is greater | "$count1"-ge

than or equal to another 433

-f A file is an ordinary file -f employee file
-d A file is a directory -d mydir
-S A file has nonzero length | -s grepout

In addition, relational expressions can be joined with either the

and operator -a or the or operator -o.

234

For example
$ if [$a -gt 10 -a $b -le 15]
10.1.1 Different types of if construct
1. Simple if construct
2. if .. then .. else construct
3. Nested if construct
Simple if construct
The general format for if construct is
if condition
then

command1

command2

commandn
fi

If the condition is TRUE then the commands enclosed in
between then and fi will be executed. Otherwise, control will be

transferred to the next statement in the script.
Example

$ if [$a -gt $b] #assume a=10, b=4

then

echo A is greater than B

fi

A is greater than B

$

if .. then .. else construct

Like most of the high level programming languages, shell
also provides the statement 'if to implement the decision

control structure

Syntax
if condition
then
Operator | Used to test if Example
= Two strings are equal | "$a" = yahoo
I= Two strings are not | "$user" |= priya
equal
-n A string has nonzero | -n "$a"
’ length
-Z A string has zero | -z "$file"
length
-eq | Two integers are equal | "$sum" -eq 30
-ne Two integers are not | "$count" -ne 3
equal

-It One integer is less | "$a" - It 334
than another

-le One integer is less | "$count1" -le 433
than or equal to
another

-gt One integer is greater | "$a" - gt 334
than another

236

-ge One integer is greater | "$count1" -ge 433
than or equal to
another

-f A file is an ordinary file | -f employee_file

-d A file is a directory -d mydir
-S A file has nonzero | -s grepout
length

In addition, relational expressions can be joined with either the

and operator -a or the or operator -o.
For example

$ if [$a -gt 10 -a $b -le 15]
elif - Nested if construct

The if...then...elif...else...fi statement is used to check multiple

conditions in one statement.
Syntax
if condition
then
command

command

elif condition
then
command

command

237

fi
Example
echo enter a number
read a
iffa -gt 0]
then
echo "a is positive"
elif [a -le 0]
then
echo "a is negative"
else
echo "a is zero"

fi

10.2 CASE STATEMENT

The shell case statement is very useful when we want to

compare a value against a collection of values. It could also be
implemented with if...then...elif...fi statement chain. But the

case statement is more convenient for implementation.
Syntax

case value

in

pattern1) command

command

238

command;;
pattern2) command

command

command;;

pattern3) command

command
command;;
esac
Example
case "$myval"
in

0) echo zero;;
1) echo one;;

2) echo two;;
3) echo three;;
4) echo four;;
5) echo five;;

6) echo six;;

7) echo seven;;

=0) echq eight;;

239

9) echo nine;;
*) echo invalid argument;;

esac

10.3 ITERATIVE STATEMENTS

Most of the programming languages have a mechanism to
execute a group of statements repeatedly. The shell
programming also has the same facilities by using ‘for’ and the

‘while’ loops.
10.3.1 for Loop

for loop is a repetitive control structure to execute

statements repeatedly for a particular number of times.
Syntax
for variable in data1 data2....... datan
do
body of the loop
done

The for loop will execute the statements which are written in the
body of the loop for values mentioned in the list following

keyword in.

Example

To print 3 numbers
forain123
do
echo "the value of a is $a"

done

240

output

the value of a is 1
the value of a is 2
the value of ais 3

In the above program each listed item following the keyword, is
assigned to variable name 'a' and echo command sends the

value to the screen.
10.3.2 while Loop

This loop is used to perform the same task as long as the

condition is true.
Syntax
while condition
do
body of the loop
done

Example

To print three numbers

a=1
while [$a -le 3]
do

echo $a

$a='expr $a+1'
done

output
23

241

The above shell program prints numbers from 1 to 3. since
shell script values are string, expr(expression) function converts

string into its numeric equivalent.

LEARNING ACTIVITIES
Fill in the Blanks:

j PO, - S statement is very useful when we want-to

compare a value against a collection of values.

- loop is used to perform the same task as long as
the condition is true.

-, (R — loop is a repetitive control structure to execute

statements repeatedly for a particular number of times.

LET US SUM UP
At the end of this unit you have understood the Control

Statements. However, for general problem solving we need the
ability to control which statements are executed and how often.
The control how many times a statement list is executed. The
for loop was used for a number of simple iteration programs.
Usually, a for loops over a set of filenames, as in foriin *.c’ or
all the arguments to a shell program, as in ‘for | in $*'. But shell
loops are more general. The while and until use the exit status
from a command to control the execution of the commands in
the body of the loop.

ANSWER TO LEARNING ACTIVITIES
Fill in the Blanks:

1. shell case
2. while
3. for

MODEL QUESTION

1. Explain the control statements.

242

UNIT - 11

FILE SYSTEM

Structure
Overview
Learning Objectives
11.1 File System
11.1.1 Naming of files
11.1.2 Parent - Child Relationship
11.1.3 File Management Utilities
11.2 Directory management commands
11.3 File operation commands
11.4 File compression
11.4.1 Copy, Move, Remove & Time
11.5 File Comparison
11.6 File Security
Let us sum up
Answer to Learning Activities

References

OVERVIEW
This unit will help you to understand the File System. It can

contain text, commands, data and sometimes machine language

codes. Also to learn Directory management commands.

LEARNING OBJECTIVES

After completing this unit, you should be able to:

% Know the File System
% Familiar with Directory management commands

% Understand the File operation commands

243

11.1 FILE SYSTEM
File system in UNIX is a stream of bytes. It can contain
text, commands, data and sometimes machine language

codes. For example

Text Files :Lines of ASCII characters separated by a
new line

Commands :Sequence of commands interpreted by

UNIX text
Data :File containing data as stream of bytes
Executable :File containing machine language
instructions

Although everything is treated as files by UNIX, files are
categorized as follows

Ordinary Files - Contains only data

Directory Files - Contains other files and directories

Device Files - Represents all hardware deviceg
11.1.1 Naming of files

In most of UNIX systems a file name can consist of 265-
characters. File name may or may not have extensions and can
consist of any ASCII gharacters except /.

Sometimes a file can be identified by two different names
(multiple links to the same file) as shown below.

Example

average.c largest.cpp

profile my_text_file.txt - are valid file names in
UNIX.

11.1.2 Parent - Child Relationship
Every file in UNIX system is related to one another.

This relationship is organized in a hierarchical structure as

shown below :
/bin Basic UNIX utilities
/dev Special I/0 device files
letc Administrative Programs
/lib Libraries used by UNIX

Jusr/bin UNIX utilities
Jusr/adm Administrative commands and files

tmp Temporary files created on error conditions

11.1.3 File Management Utilities

In UNIX Operating System all types of files are managed

by a set of file utility commands.

The following are the frequently used file management

commands
1. Directory management commands

a.cd
b. pwd
c. mkdir
d. rmdir
e. mvdir

2. File operation commands

a. File content

245

246

a.

b.

a.
b.
C.
d.
8.
f.

i. cat
ii. Is

iii. we
iv. find

v. file

. File compression

i. pack
ii. unpack

. File mount

i. mount

ii. unmount

. Copy, move, remove & time

i. cp
ii. In

iii. mv
iv.rm

v. touch

. File Comparison

cmp

comm

. File Security

passwd
crypt
chown
chmod
chgrp
umask

11.2 DIRECTORY MANAGEMENT COMMANDS

cd - Change Directory
cd command is used to change the current working directory
Example
$ cd /usr/dayid/c # current directory is c #
$ed .. # current directory becomes david
$cdc # again current directory becomes c #
pwd - Print Working Directory

When user logs in to the system it provides a working
directory for the user called as current working directory. pwd

command is used to know the current working directory.

pwd is an abbreviation of Print Working Directory.

Example
$ cd /usr/david/c # current directory is c #
$ pwd # current working directory will be
as follows:
/usr/david/c

mkdir - Make Directory
mkdir command is used to create an empty directory.
Syntax

$ mkdir directoryname

Example

$ mkdir anand # creates a subdirectory called anand #

$ mkdir sudeer # creates a subdirectory called sudeer#

247

rmdir - Remove Directory

rmdir command is used to remove a directory provided that
particular directory is empty, i.e, the directory which is to be
removed should not have any files or other sub directories in it.

Syntax
$ rmdir directoryname
Example
$ rmdir anand # removes a subdirectory - anand #
$ rmdir sudeer # removes a subdirectory - sudeer#
mvdir - Move Directory

mvdir command is used to
Syntax

$ mvdir directoryname

Example

$ mvdir anand # removes a subdirectory - anand #
11.3 FILE OPERATION COMMANDS

File content

cat - Concatenate & Print : cat command is used to create a
file or concatenate or print the content of a file on the standard

output devices such as screen or printer.
Syntax_: $ cat filename
Example
$ cat myfile.c #displays the content of myfile.c on screen#

Sometimes, cat command can also be used to create files as

follows

248

Example

$ cat file1 > file2 # file2 is created with the
content of file1

$ cat file1 file2 > file3 # a single file by name
file3
is created with the
contents
of file1 merged with file2
Is - list

Is command is used to list all the files in the current directory or
a specified directory.

Syntax
$ Is [options]
Options
-1 number one single column output
-l long format
-a all entries including dot files
-s gives no. of disk blocks
- inode no.
-t ordered by modification time recent first

-R recursively display all directories, starting from specie

or current directory

Example

Assume current directory as following files: testi.c, test2.c,
test3.c

249

$ls -1
Output
test1.c
test2.c
test3.c
Example
$ls-l
Output
total 42
-rw-r--r-- 1 anand mech 4334 May 7 01:10 test1.c
-rw-r--r-- 1 anand mech 324 May 7 05:10 test2.c
-rw-r--r-- 1 anand mech 3234 May 7 03:10 test3.c

The first line of the output indicates the total of 42 blocks of disk
space consisting of 512 bytes are occupied by the 3 files. The -I
(long) option gives the information about access permissions,
file size, ownership details, last modified date & time.

wc command

wc command is used to get the total number of lines, words

and characters for a given file.
Syntax
$ wc [options] filename
Options
-l counts only the number of lines

-w counts only the number of words

250

-c counts only the number of characters

Example
Assume myfile.dat has 7 lines, 24 words and 104 characters in
it.

$ wc myfile.dat

724104

The find Command

This command locates the files both in the directories and
subdirectories. It performs recursive searches for finding the

files.
Syntax
find path_list selection_criteria action

The search always begins with a root directory when the path
list '/ is specified. All find operators start with a -, and the path

list can never contain one. The various options used are
The -name Option

This lists out the specific files in all directories beginning from
directory name specified. Wild card options can also be used

here.

The -type option

This option is useful in identifying ordinary and directory files.
-type d -> represents directory files.

-type f -> represents ordinary files.

The -mtime optionL
This option allows finding the files that has been modified
before or after a specified time.
Example
Current date -15/11/02

-mtime +5

Qutput

Displays those files, which have been modified before
10/11/02.

The -exec option
The files, which have been located using the find command,

can be executed using this option.

The -ok option

This option is similar to -exec option in executing the files
located by the find command, but this option has its special
interactive nature

file command

Since UNIX system categorize files into ordinary, directory and

device files, this file command is used to get the type of the file.

Syntax

$ file filename

Example

Assume employee.dat has details about the employees of a

company.
$ file employee.dat

employee.dat: ascii text

252

11.4 FILE COMPRESSION

pack - compress a file

Pack command is used to compress a file, so that it
occupies less space [Normally 20-40%]. The compressed will
be named as filename.z. In general executable files are

packed.

Syntax

$ pack filename
Examme
_ $ pack employee.dat #employee.dat.z file will be created
unpack - Uncompress a file
unpack command is used to uncompress a packed file.

Syntax

$ unpack filename.z
Example
$ unpack employee.z #will create employee.dat
11.4.1 Copy, Move, Remove & Time
cp - copy a file
cp command is used to copy the contents of one file into
another file. And also from one directory to another directory.
Syntax
$ cp sourcefile destinationfile
The content of sourcefile is copied to the destinationfile. If the

destinationfile exists already UNIX system overwrites without

giving any warning.

Example
$ cp myfile.dat yourfile.txt
$ cp myfile.dat /usr/rajlyourfile.txt
$ cp /usr/csc/raj/myfile.dat /usr/mech/ravi/edata.txt
In - link
UNI‘X allows a file to have more than one name, yet maintaining
a single copy in the disk. When changes in file takes place, it

reflects in the other. To implement such a link between two

files, we use In command.

Syntax
$ In file1 file2

Example
$ In employee.dat emplist.txt
mv - move/rename a file

mv command is used to move or rename files. When two
arguments refer different directories, then the file is actually
moved from the first directory to the second directory.
Syntax

$ mv file1 file2

$ mv dir1 newdir2

Example

$ mv employee.dat emplist.txt #rename file
employee.dat
#to emplist.txt within

#the same directory

254

$ mv /usr/csc/raj/lemployee.dat /usr/mech/mahi

in the above example, the file employee.dat from /usr/csc/raj
will be moved to the directory usr/mech/mahi with the same file
name.

rm - remove a file

rm command is used to remove files. The argument to the rm
command is a name of the file to be removed. Sometimes we
can remove more than one file using multiple arguments and
wildcards.

Syntax

$ rm filename
Example
$ rm employee.dat
touch - to change timestamps

touch command is used to éhange the timestamp of one or
more files. Sometimes, it may be required to modify the access
time of a file into a predefined value. The touch command does
this.

Syntax

$ touch: [options] [expressions] filename(s)
expression should be in mmddhhmm format.

Example

$ touch 11182305 file2.txt #file2.txt will have the date
#and time like 18th Nov 23:05

11.5 FILE COMPARISON

cmp - compare two files

cmp command is used to compare two files. When the user has
doubt about having identical files, he can use this command to
have a comparison of those files and if necessary he may

delete either of the files.

Syntax
$ cmp file1 file2

Example

$ cmp emp1.txt employee.dat
Output

emp1.txt employee.dat differ: char 10, line 3
Options

The - (list) option gives the detailed list of the byte number and
the differing bytes in octal for each character that differs in both
files.

Example
$ cmp -| emp1.txt employee.dat
4 145 147
6 135 144
8132 136
9130 142

There are four differences in between the two files at the

character position 4, 6, 8 and 9.

256

The two files are compared byte by byte and location of the first

mismatch is echoed to the screen.
Identical files

If both the files are identical, the cmp command displays no

message but simply returns to the $ prompt
Example

$ cmp emp1.txt emp1.txt

$
comm - to find what is common

comm command is used to compare two sorted files. It
compares each line of the first file with its corresponding line in

the second.

Syntax

$ comm file1 file2
Example

$ cat file1

andal

babu

devi

hari

sony

$ cat file2

anand

babu

257

dayal
hari
sony
$ comm file1 file2
anand
andal
babu
dayal
devi
hari
sony

The first column contains 2 lines unique to the first file while the
second column shows 2 lines unique only to the second file and

3rd column displays 3 lines common to both files.

11.6 FILE SECURITY

passwd - Password Command

passwd command is used to change the password of the

current user whenever it's necessary.
Syntax

$ passwd
Example

$ passwd

Changing password for ram

Old password: xxxxxx [not printed]

258

New password: xxxxxx [not printed]
Re-enter new password: xxxxxx [not printed]

$

This command prompts the user to type the old password and
then the new password. For security reasons the typed

password won't be displayed on the screen.
Crypt

crypt command is used to hide the content of the file using
encryption method. Secret files and passwords are normally
encrypted to prevent from being misused.

Syntax

$ crypt key < filename
Example

$ cat students

ram 29/10/1975

raghu 11/10/1975

rajesh 14/12/1976

$ crypt mykey < students

#sfd.$55*fsd.$432s.fsdfsdfds_*%
The encrypted file will have file name as students.crypt.
To decrypt an encrypted file the same crypt command is used.
Example

$ crypt mykey < students.crypt

$ cat students

259

ram 29/10/1975
raghu 11/10/1975
rajesh 14/12/1976

LEARNING ACTIVITIES
Fill in the Blanks:

1. In most of UNIX systems a file name can consist of
.............. characters.

. S, command is used to hide the content of the file
using encryption method.

<, O — command is used to compare two sorted files.

LET US SUM UP

At the end of this unit you have understood the File

System. Files are managed by the Operating System. How
they are structured, named, accessed, used, protected, and
implemented are major topics in operating system design. As a
whole, that part of the operating system dealing with files is

known as the file system and is the subject of this unit.

ANSWER TO LEARNING ACTIVITIES

Fill in the Blanks:

1. 255

2. crypt
3. comm.

260

MODEL QUESTIONS

1. How will you list the ordinary files in your current
directory that are not writable?

2. When do you use grep?

3. Which two commands in the UNIX system let two users
"chat" with each other?

4. Why is mail preferable to write/

5. If you don't want to be distributed by others, what
precautions should you take?

6. What is the default location of a user's mailbox?

REFERENCES

Andrew S. Tanenbaum — Operating System Design and

Implementation - PHI

261

BLOCK 4 INTRODUCTION

At the end of this block you will know the Software
Engineering. Software Engineering techniques have evolved
over many years as a result of a series of innovations and
accumulation of program writing experience of writing good
quality programs. A software life cycle is the series of
identifiable stages that a software product undergoes during its
lifetime. Traditionally, a quality product is defined in terms of its
fitness of purpose. That is, a quality product does exactly what
the users want it to do. CASE tools promise reduction in
software development and maintenance costs. Case tools help
develop better quality products more efficiently. A Case tool is a
generic term used to denote any form of automated support for
software engineering.

Introduction to System Software is divided into Four Blocks.

Block 4 is about Software Engineering.

Unit 12: deals with the Software life cycle processes, Engineer’s
responsibility, Software Quality and Case Tools

262

UNIT - 12

SOFTWARE ENGINEERING

Structure

Overview

Learning Objectives

12.1 Introduction to Software Engineering
12.2 Software Life Cycle Processes
12.3 The Engineer's Responsibility
12.4 The Software Quality

12.6 4GL and Natural Languages
12.7 Case Tools

Let us sum up

Answer to Learning Activities

References

OVERVIEW

Software design technique concerns how to effectively

decompose a large problem into manageable parts. Handling
complexity in a software development problem is a central
theme of the software engineering discipline. You would also
learn the techniques of software specification, user-interface
development, testing project management and so forth. Even if
you intend to write small programs, the software engineering
principles could help you to achieve higher productivity and at

the same time enable you to produce better quality programs.

LEARNING OBJECTIVES

After completing this unit, you should be able to:

% Know the Software Engineering

263

% Familiar with Software Life Cycle Processes
% Understand the Software Quality
% Understand the Case Tools

12.1 INTRODUCTION TO SOFTWARE
ENGINEERING
What is Software Engineering?

Software engineering is a modeling activity problem-
solving activity knowledge acquisition activity rational-

driven activity.
Modeling

A model is an abstract representation of a system (real
or imaginary) that enables us to answer questions about the
system. Models are constructed of the problem domain in
order to understand the problem solution domain in order to

understand different solutions and trade-offs. Problem Solving
Knowledge Acquisition

Knowledge acquisition is non-linear - additional

knowledge may invalidate previous knowledge.
Rational Management

The context in which each design decision was made is

called the rational of the system.
The Nature of Software

Software is flexible. Software is an executable
specification of a computation. Software is expressive. All
computable functions may be expressed in software. Complex

event driven systems may be expressed in software. Software

264

is huge. An operating system may consist of millions of lines of
code. Software is complex. Software has little regularity
recognizable components found in other complex systems and
there are exponentially many paths through the code and
changes in one part of the code may have unintended
consequences in other equally remote sections of the code.
Software is cheap. Manufacturing cost is zero, development
cost is everything. Thus, the first copy is the engineering
prototype, the production prototype and the finished product.
Software is never finished. The changing requirements and
ease of modification permits the maintenance phase to
dominate a software product's life cycle, i.e., the maintenance
phase consists of on going design and implementation cycles.
Software is easily modified. 1t is natural to use an iterative
development process combining requirements elicitation with
design and implementation and wuse the emerging
implementation to uncover errors in design and in the
requirements. Software is communication. Communication with
a machine but also communication between the client, the
software architect, the software engineer, and the coder.

Software must be readable in order to be evolvable.

12.2 SOFTWARE LIFE CYCLE PROCESSES
Software life cycle

The period of time that begins when a software product
is conceived and ends when the software is no longer available

for use. This cycle typically includes a

265

Traditional software life cycle

h Extreme programming |
phases 3

concept phase

Listening/PIaﬁning

software development life cycle Designing

requirements phase Testing

desigh phase Coding

implementation phase These phases overlap

test phase - and are performed
iteratively.

installation and checkout phase
operation and maintenance phase
retirement phase

These phases may overlap and/or
be performed iteratively.

Software life cycle processes

Primarylifecycle | Supporting life cycle

processes processes
© Acquisition || IDocumentation
;Supply " i Configuration manége'ment: i

i
{
st

. Operation | | |Quality assurance
\Development |

|
i _—

EM sifitenanse § Verification
|

Validation

Joint review

266

H IAUdit,,_ 0 SIS D SR P GOl

! S i S s
g IProblem resolution

| |

iOrganizationaI life cycle processes

Management Infrastructure

Improvement Training

12.3 THE ENGINEER'S RESPONSIBILITY

The software engineer who writes a program is best able
to find and fix its defects. It is thus important that software
engineers take personal responsibility for the quality of the
programs they produce. Writing defect-free programs, however,
is challenging and it takes effective methods, skill, practice, and
data. By using the Personal Software Process (PSP),
engineers learn how to consistently produce essentially defect-

free programs.

12.4 THE SOFTWARE QUALITY

The Software Quality Problem

Software quality is becoming increasingly irhportant.
Software is now used in many demanding applicaﬁons and
software defects have caused serious damage and even
physical harm. While defects in financial or word processing
programs are annoying and possibly costly, nobody i killed or
injured. When software-intensive systems fly airplanes, drive
automobiles, control air traffic, run factories, or operate power
plants, defects can be dangerous. People havév been killed by

defective software.

267

While there have not been many fatalities so far, the
numbers will almost certainly increase. In spite of all its
problems, software is ideally suited for critical applications: it
does not wear out or deteriorate. Computerized control systems |
are so versatile, economical, and reliable that they are now the
common choice for almost all systems. Software engineers
must thus consider that their work could impact the health,

safety, and welfare of many people.
The Risks of Poor Quality

Any defect in 2 small part of a large program could
potentially cause sericus problems. While it may seem unlikely
that a simple error in a remote part of a large system could be
potentially disastrous, these are the most frequent sources of
trouble. The problem is that systems are becoming faster, more
complex, and automatic. Catastrophic failures thus are

increasingly likely and potentially more damaging.

In the design of large systems, the difficult design issues
are often carefully studied, reviewed, and tested. As a result,
the most common causes of software problems are simple
oversights and goofs. These are typically simple mistakes that
were made by individual software engineers. While most of
these simple mistakes will get caught in compiling and testing,
engineers inject so many defects that large numbers still
escape the entire testing process and are left to be found

during product use.

The problem is that software engineers often confuse
simple with easy. They feel that their frequent simple mistakes
will be simple to find. They are often surprised to learn that

such trivial errors as omitting a punctuation mark, misnaming a

268

parameter, incorrectly setting a condition, or disseminating a
loop could escape testing and cause serious problems in actual
use. These, however, are the kinds of things that cause a large
proportion of the problems software suppliers spend millions of
dollars finding and fixing. While most of these trivial mistakes
will have trivial consequences, a few can cause unpredictable

and possibly damaging problems.

The quality of large programs depends on the quality of
the smaller programs of which they are built. Thus, to produce
high quality large programs, every software engineer who
develops one or more of the system's parts must do high-
quality work. This means that all the engineers must be
personally committed to quality. When they are so committed,
they will track and manage their defects with such care that few
if any defects will later be found in integration, system testing,
or by the customers. The SEI has developed the Personal
Software Process (PSP) and the Team Software Process™™

(TSP™) to help engineers work this way.
Measuring Software Quality

Software quality impacts development costs, delivery
schedules, and user satisfaction. Because software quality is
so important, we need to first discuss what we mean by the
word quality. The quality of a software product must be defined
in terms that are meaningfui to the product's users. What is

most important to them and what do they need?
Defects and Quality

A software engineer's job is to deliver quality products

for their planned costs, and on their committed schedules.

Software products must also meet the user's functional needs
and reliably and consistently do the user's job. While the
software functions are most important to the program's users,
these functions are not usable unless the software runs. To get
the software to run, however, engineers must remove almost all
its defects. Thus, while there are many aspects to software
quality, the first quality concern must necessarily be with its

defects.

The reason defects are so important is that people make
a lot of mistakes. In fact, even experienced programmers
typically make a mistake for every seven to ten lines of code
they develop. While they generally find and correct most of
these defects when they compile and test their programs, they
often still have a lot of defects in the finished product.

What Are Defects?

Some people mistakenly refer to software defects as
bugs. When programs are widely used and are applied in ways
that their designers did not anticipate, seemingly trivial
mistakes can have unforeseeable consequences. As widely
used software systems are enhanced to meet new needs,
latent problems can be exposed and a trivial-seeming defect
can truly become dangerous. While the vast majority of trivial
defects have trivial consequences, a small percentage of
seemingly silly mistakes can cause serious problems. Since
there is no way to know which of these simple mistakes will
have serious consequences, we must treat them all as

potentially serious defects, not as trivial-seeming "bugs."

The term defect refers to something that is wrong with a

program. It could be a misspelling, a punctuation mistake, or an

270

incorrect program statement. Defects can be in programs, in
designs, or even in the requirements, specifications, or other
documentation. Defects can be redundant or extra statements,
incorrect statements, or omitted program sections. A defect, in
fact, is anything that detracts from the program's ability to
completely and effectively meet the user's needs. A defect is
thus an objective thing. It is something you can identify,

describe, and count.

Simple coding mistakes can produce very destructive or
hard-to-find defects. Conversely, many sophisticated design
defects are often easy to find. The sophistication of the design
mistake and the impact of the resulting defect are thus largely
independent. Even trivial implementation errors can cause
serious system problems. This is particularly important since
the source of most software defects is simple programmer
oversights and mistakes. While design issues are always
important, initially developed programs typically have few
design defects compared to the number of simple oversights,
typos, and goofs. To improve program quality, it is thus
essential that engineers learn to manage all the defects they

inject in their programs.

12.5 PRINCIPLES OF SOFTWARE ENGINEERING

Separation of Concerns

Separation of concerns is recognition of the need for
human beings to work within a limited context. As described by
G. A. Miller. The human mind is limited to dealing with
approximately seven units of data at a time. A unit is something
that a person has learned to deal with as a whole - a single

abstraction or concept. Although human capacity for forming

271

abstractions appears to be unlimited, it takes time and
repetitive use for an abstraction to become a useful tool; that is,
to serve as a unit.

When specifying the behavior of a data structure
component, there are often two concerns that need to be dealt
with: basic functionality and support for data integrity. A data
structure component is often easier to use if these two
concerns are divided as much as possible into separate sets of
client functions. It is certainly helpful to clients if the client
documentation treats the two concerns separately. Further,
implementation documentation and algorithm descriptions can
profit from separate treatment of basic algorithms and

modifications for data integrity and exception handling.

There is another reason for the importance of separation
of concerns. Software engineers must deal with complex values
in attempting to optimize the quality of a product. From the
study of algorithmic complexity, we can learn an important
lesson. There are often efficient algorithms for optimizing a
single measurable quantity, but problems requiring optimization
of a combination of quantities are almost always NP-complete.
Although it is not a proven fact, most experts in complexity
theory believe that algorithms that run in polynomial time

cannot solve NP-complete problems.

In view of this, it makes sense to separate handling of
different values. Dealing can do this either with different values
at different times in the software development process, or by
structuring the design so that responsibility for achieving

different values is assigned to different components.

272

As an example of this, run-time efficiency is one value
that frequently conflicts with other software values. For this
reason, most software engineers recommend dealing with
efficiency as a separate concern. After the software is design to
meet other criteria, it's run time can be checked and analyzed
to see where the time is being spent. If necessary, the portions
of code that are using the greatest part of the runtime can be
modified to improve the runtime. This idea is described in depth
in Ken Auer and Kent Beck's article "Lazy optimization: patterns

for efficient mall talk programming".
Modularity

The principle of modularity is a specialization of the
principle of separation of concerns. Following the principle of
modularity implies separating software into components
according to functionality and responsibility. Parnas wrote one
of the earliest papers discussing the considerations involved in
modularization. A more recent work, describes a responsibility-
driven methodology for modularization in an object-oriented

context.
Abstraction

The principle of abstraction is another specialization of
the principle of separation of concerns. Following the principle
of abstraction implies separating the behavior of software
components from their implementation. It requires learning to
look at software and software components from two points of

view: what it does, and how it does it.

Failure to separate behavior from implementation is a common

cause of unnecessary coupling. For example, it is common in

recursive algorithms to introduce extra parameters to make the
recursion work. When this is done, the recursion should be
called through a non-recursive shell that provides the proper
initial values for the extra parameters. Otherwise, the caller
must deal with a more complex behavior that requires
specifying the extra parameters. If the implementation is later
converted to a non-recursive algorithm then the client code will

also need to be changed.

Design by contract is an important methodology for
dealing with abstraction. Fowler and Scott sketch the basic
ideas of design by contract. Meyer gives the most complete
treatment of the methodology.

Anticipation of Change

Computer software is an automated solution to a
problem. The problem arises in some context, or domain that is
familiar to the users of the software. The domain defines the
types of data that the users need to work with and relationships
between the types of data.

Software developers, on the other hand, are familiar with
a technology that deals with data in an abstract way. They deal
with structures and algorithms without regard for the meaning
or importance of the data that is involved. A software developer
can think in terms of graphs and graph algorithms without

attaching concrete meaning to vertices and edges.

Working out an automated solution to a problem is thus
a learning experience for both software developers and their
clients. Software developers are learning the domain that the

clients work in. They are also learning the values of the client:

274

what form of data presentation is most useful to the client, what
kinds of data are crucial and require special protective

measures.

The clients are learning to see the range of possible
solutions that software technology can provide. They are also
learning to evaluate the possible solutions with regard to their

effectiveness in meeting the client’s needs.

If the problem to be solved is complex then it is not
reasonable to assume that the best solution will be worked out
in a short period of time. The clients do, however, want a timely
solution. In most cases, they are not willing to wait until the
perfect solution is worked out. They want a reasonable solution
soon, perfection can come later. To develop a timely solution,
software developers need to know the requirements: how the
software should behave. The principle of anticipation of change
recognizes the complexity of the learning process for both
software developers and their clients. Preliminary requirements
need to be worked out early, but it should be possible to make

changes in the requirements as learning progresses.

Coupling is a major obstacle to change. If two
components are strongly coupled then it is likely that changing

one will not work without changing the other.

Cohesiveness has a positive effect on ease of change.
Cohesive components are easier to reuse when requirements
change. If a component has several tasks rolled up into one
package, it is likely that it will need to be split up when changes

are made.

273

Generality

The principle of generality is closely related to the
principle of anticipation of change. It is important in designing
software that is free from unnatural restrictions and limitations.
One excellent example of an unnatural restriction or limitation is
the use of two digit year numbers, which has led to the "year
2000" problem: software that will garble record keeping at the
turn of the century. Although the two-digit limitation appeared
reasonable at the time, good software frequently survives
beyond its expected lifetime.

For another example where the principle of generality
applies, consider a customer who is converting business
practices into automated software. They are often trying to
satisfy general needs, but they understand and present their
needs in terms of their current practices. As they become more
familiar with the possibilities of automated solutions, they begin
seeing what they need, rather than what they are currently
doing to satisfy those needs. This distinction is similar to the
distinction in the principle of abstraction, but its effects are felt

earlier in the software development process.
Incremental Development

Fowler and Scott give a brief, but thoughtful, description
of an incremental software development process. In this
process, you build the software in small increments; for

example, adding one use case at a time.

An incremental software development process simplifies
verification. If you develop software by adding small increments

of functionality then, for verification, you only need to deal with

276

the added portion. If there are any errors detected then they are

already partly isolated so they are much easier to correct.

A carefully planned incremental development process
can also ease the handling of changes in requirements. To do
this, the planning must identify use cases that are most likely to
be changed and put them towards the end of the development

process.
Consistency

The principle of consistency is recognition of the fact that
it is easier to do things in a familiar context. For example,
coding style is a consistent manner of laying out code text. This
serves two purposes. First, it makes reading the code easier.
Second, it allows programmers to automate part of the skills
required in code entry, freeing the programmer's mind to deal

with more important issues.

At a higher level, consistency involves the development
of idioms for dealing with common programming problems.
Coplien gives an excellent presentation of the use of idioms for

coding in C++.

Consistency serves two purposes in designing graphical
user interfaces. First, a consistent look and feel makes it easier
for users to learn to use software. Once the basic elements of
dealing with an interface are learned, they do not have to be
relearned for a different software application. Second, a
consistent user interface promotes reuse of the interface
components. Graphical user interface systems have a
collection of frames, panes, and other view components that

support the common look. They also have a collection of

27

controllers for responding to user input, supporting the common
feel. Often, both look and feel are combined, as in pop-up

menus and buttons. These components can be used by any
program.

Meyer applies the principle of consistency to object-
oriented class libraries. As the available libraries grow more
and more complex it is essential that they be designed to
present a consistent interface to the client. For example, most
data collection structures support adding new data items. It is
much easier to learn to use the collections if the name add is
always used for this kind of operation.

12.6 4GL AND NATURAL LANGUAGES
Computers are designed to process, retrieve and store
programmed information. Typically, they can only respond to

electronic signals that correspond to binary numbers.

Programming languages are designed to translate human
language into commands that the computer can understand.
There are currently five “generations” or levels of languages
available [1]. Machine language, or First-Generation language,
consists solely of binary numbers. Machine languages are
computer dependent and therefore every type of computer has
its own machine language. Assembly language, or Second-
Generation language, which came into use in the mid-1950s,
uses a shorthand notation of letters and numbers to
communicate with the computer in place of binary groupings
[2]. Assemblers are then utilized to translate the assembly
language into machine language. Assembly language is still
computer-dependent and therefore results in a unique

assembly language for every type of machine. Higher Order

278

language (HOL), or Third-Generation language (3GL), whicii
came into use in the 1960s, consists of statements which i
closely resemble the spoken language, and therefore are
easier to read and write since they require fewer statements
per function. Special programs, or compilers, must then
translate the HOL statements to assembly or machine
language. Expanding upon this, Fourth-Generation languages
(4GLs), or Very High Level Languages (VHLL), also use
instructions, which resemble the spoken language, but they
allow the programmers to define "what" they want the computer
to do without necessarily telling the computer "how" to do it.
Typically, the compilers, or interpreters, for 4GLs are not as
efficient as HOL compilers in using available memory and
processing speed. Finally, the highest level of programming,
Fifth-Generation languages (5GLs), would involve a computer,
which responds directly to spoken or written instructions, or
English language commands. There exist only a few 5GLs or
"natural languages", and they are typically used in artificial

intelligence applications.

Eighty percent of weapon system and AIS applications
are written in 3GLs. However, 3GLs require a special program,
or compiler, to translate the HOL statements in to assembly or
machine instructions. Compilers are not as efficient in terms of
memory utilization or processing speed, so a tradeoff between
performance and ease is often required when employing 3GLs.
Additionally, 3GLs require a vast amount of code to provide the
same functionality and are time consuming to debug. Hence,
the necessity for the creation of 4GLs, which capitalize on

advanced techniques of programming while simplifying the

29

man_—machine interfaces [3]. Currently, there are many 4GLs
available, such as Oracle, VisiCalc, FOCUS, RAMIS II, and
DBase IV, and new ones are still appearing daily. The
languages tend to fall into four functional areas: Query and
Report Generators, Graphic Languages, Database
management tools and Spreadsheets. As such, they typically
have a very limited range of application. This issue paper will
address the productivity differences, anticipated and
experienced, between 3GLs and 4GLs.

Ease of use:

Because the syntax of 4GLs closely relates to the
human-language syntax, it is easier to learn. Additionally, due
to the non-procedural nature of many of the languages, the
techniques for accomplishing things are also simple, while the
results are fast and impressive. Fourth-Generation languages
also aim to remove the use of unnecessary acronyms, thereby
allowing users to expend their effort on the purpose of the
application, vice being bogged down with extraneous
requirements.

Limited range of functions:

4GLs are typically designed for a limited set of functions
or specific applications. This is because the product then
becomes easier to use than a full programming language. For
example, Lotus 1-2-3 gained a large number of users quickly

because it made it easy to manipulate spreadsheet data.
Restrictions of Options:

Higher level languages often restrict the options

available to users of lower level languages, such as the

280

capability to modify themselves at execution time. To
compensate for this, 4GLs permit automatic verification before

testing.
Default Options:

A user of a 4GL is not required to specify everything.
Instead, a compiler or interpreter is capable of making
intelligent assumptions about what it thinks the user needs.
Therefore, while 4GLs often require that many parameters be
specified, they also provide a default option if the user does not
make a selection. This saves time and debugging efforts.

Monologue and Dialogue:

With 4GLs, a dialogue occurs between the user and the
computer. This allows for more opportunities to catch errors as
they are being made. The software may ask the user questions,
signal errors, and flag inconsistencies as the application is

being created.
Summary

The objectives of 4GLs are: 1) to speed up the
application-building process, 2) to make applications easy and
quick to change, hence reducing maintenance cost, 3) to
minimize debugging problems, 4) to be able to generate “bug-
free” code from high expressions of requirements and 5) to
make the language easy to use, so that the end users could
solve their own problems [3]. Fourth-Generation languages
require far fewer lines of code than would a 3GL, and they also
employ a wide variety of other tools such as screen interaction,
filing in forms or panels, and computer aided graphics. The

goal is to allow the programmer to tell the computers “what-to-

281

do” and not have to worry about telling the computers “how-to-
do-it” (i.e. non-procedural). There are currently no standards for
4GLs, primarily because new ideas in language syntax,
dialogue and semantics are appearing daily. Some 4GLs have
already disappeared, and many of the best languages now
come from relatively small, new vendors. As such, their
application to Mission Critical Computer Resources (MCCR)
systems, where obsolescence and supportability are key
issues, is limited. Due to their limited range of application and
their slow processing speeds, they will tend to be more
prevalently utilized in Management Information Systems (MIS)
developments.

Fourth Generation Languages

1st Generation -- Machine Language

2nd Generation -- Assembly Languages

3rd Generation -- High-Level Languages

4th Generation -- Non-Procedural Languages

5th Generation -- Knowledge-based Natural Language
Where do Object-Oriented Languages fit

In the database environment these are used for creation
of database applications To speed up the application building
process To make applications easy and quick to change. To
minimize debugging problems. To generate bug-free code from
high-level expressions of requirement To make languages
user-friendly so that “end-users” can solve their own problems
and put computers to work.

282

Basic Principles of 4GLs

The Principle of Minimum Work

The Principle of Minimum Skill

The Principle of avoiding alien syntax and mnemonics
The Principle of Minimum Time

The Principle of Minimum errors

The Principle of Minimum Maintenance

The Principle of Maximum Results

5GLs -- Natural Language

Advantages of using NL

It encourages untrained users to start
It encourages upper-management use of computers
It reduces the time taken learning complex syntax

It lessens the frustration, bewilderment and anger
caused by BAD COMMAND responses

It is likely to extend greatly the usage of computers

Disadvantages of using NL

It lacks precision

It is not good for expressing precise and complex logic
It is not good for expressing neat structures

It encourages semantic overshoot

It takes substantial time to key in sentences

Ambiguities are possible

Substantial processing is needed

283

Appropriate response to the
Disadvantage

It should be combined with other dialogue constructs

that aid in the representation of precise logic and

structures
¢ Sentences and words can be abbreviated
e Speech input as well as typed input will be used
e The computer should detect and resolve ambiguities

e The processing should be on PC workstations.
Processing is dropping rapidly in cost. Computer-aided

software engineering

12.7 CASE TOOLS
Computer-aided software engineering (CASE) is the

use of software tools to assist in the development and
maintenance of software. Tools used to assist in this way are
known as CASE Tools. A set of these tools are referred to as
ICASE.

All aspects of the software development lifecycle can be
supported by software tools, and so the use of tools from
across the spectrum can, arguably, be described as CASE;
from project management software through tools for business
and functional analysis, system design, code storage,

compilers, translation tools, test software, and so on.

However, it is the tools that are concerned with analysis
and design, and with using design information to create parts
(or all) of the software product, that are most frequently thought
of as CASE tools. Such tools arose out of developments such

284

as Jackson Structured Programming and the software

modelling techniques promoted by researchers such as Ed

Yourdon, Chris Gane and Trish Sarson (see structured

programming, SSADM). In this narrower range, CASE applied,

for instance, to a database software product, might normally

involve:

Modelling business / real world processes and data flow

Development of data models in the form of entity-
relationship diagrams

Development of process and function descriptions

Production of database creation SQL and stored
procedures

Some typical CASE tools are:
Code generation tools
UML editors and the like

Refactoring tools
Configuration management tools including revision

control

CASE tools do not only output code. They also generate other

output typical of various systems analysis and design

methodologies such as SSADM. E.g.

e database schema

e data flow diagrams

e entity relationship diagrams
e program specifications

e user documentation

285

Sometimes CASE tools are separated in two groups:

Upper CASE: Tools for the analyse and design phase of the
software development lifecycle (diagraming tools, report and
form generators, analysis tools)

Lower CASE: Tools to support implementation, testing,
configuration management

List of sample CASE tools

ArgoUML

Bluelnk

CASEWise

DBDesigner 4 is a visual database design system that
integrates database design, modeling, creation and
maintenance into a single environment DMS Software

Reengineering Toolkit Eclipse with plug-in.

LEARNING ACTIVITIES
Fill in the Blanks:

P is the use of software tools to assist in the

development and maintenance of software.

N is an abstract representation of a system (real or
imaginary) that enables us to answer questions about
the system.

5 e components are easier to reuse when

requirements change.

LET US SUM UP

Software engineering as the engineering approach to

develop software. From this point of view, we could say that
the discipline of software engineering discusses systematic and

cost-effective software development approaches which have

286

come about from past innovations and lessons learnt from
mistakes. Software engineering techniques are essential for
the development of large software products where a group of

engineers are useful even when developing small programs.

ANSWER TO LEARNING ACTIVITIES
Fill in the Blanks:

1. Computer-aided software engineering (CASE)
2. Model
3. Cohesive

MODEL QUESTIONS
What is Software Engineering?
What's a CASE Tool?

What's a 'function point'?

What's the 'spiral model'?
Where can | find a public-domain tool to compute metrics?
What metrics are there for object-oriented systems?

How do | write good C style?

B d 8 B e =

What is 'Hungarian Notation'?

9. Are lines-of-code (LOC) a useful productivity measure?
10.Should software professionals be licensed /certified?
11.How do | get in touch with the SEI?

12.What is the SEI maturity model?

13.Where can | get information on API?

14.What's a 'bug'?

15.Where can | get copies of standards??

16.What is 'clean room'?

17.What is the Personal Software Process?

REFERENCES

Pressman - Software Engineering

